
9HSTFMG*afjajj+ 



 



Aalto University publication series 
DOCTORAL DISSERTATIONS 160/2014 

Infinite Dimensional Systems: 
Passivity and Kalman Filter 
Discretization 

Atte Aalto 

A doctoral dissertation completed for the degree of Doctor of 
Science (Technology) to be defended, with the permission of the 
Aalto University School of Science, at a public examination held at 
the lecture hall M1 of the school on 28 November 2014 at 12. 

Aalto University 
School of Science 
Department of Mathematics and Systems Analysis 



Supervising professor 
Prof. Rolf Stenberg 
 
Thesis advisor 
Dr. Jarmo Malinen 
 
Preliminary examiners 
Prof. Alessandro Macchelli, University of Bologna, Italy 
Dr. Philippe Moireau, Inria Saclay, France 
 
Opponent 
Prof. Giorgio Picci, University of Padova, Italy 

Aalto University publication series 
DOCTORAL DISSERTATIONS 160/2014 
 
© Atte Aalto 
 
ISBN 978-952-60-5909-9 (printed) 
ISBN 978-952-60-5910-5 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
http://urn.fi/URN:ISBN:978-952-60-5910-5 
 
Unigrafia Oy 
Helsinki 2014 
 
Finland 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Atte Aalto 
Name of the doctoral dissertation 
Infinite Dimensional Systems: Passivity and Kalman Filter Discretization 
Publisher School of Science 
Unit Department of Mathematics and Systems Analysis 

Series Aalto University publication series DOCTORAL DISSERTATIONS 160/2014 

Field of research Mechanics 

Manuscript submitted 19 August 2014 Date of the defence 28 November 2014 

Permission to publish granted (date) 7 October 2014 Language English 

Monograph Article dissertation (summary + original articles) 

Abstract 
The results of this thesis can be divided into two categories, well-posedness and passivity of 

boundary control systems and Kalman filter discretization. It is shown that a composition of 
internally well-posed, impedance passive boundary control systems through Kirchhoff type 
couplings is also an internally well-posed, impedance passive boundary control system. The 
concept of a passive majorant is defined and it is shown that boundary control systems that 
possess a passive majorant are internally well-posed, passive boundary control systems. 
 
The effect of both temporal and spatial discretization to Kalman filtering is studied. Firstly, 
convergence speed rates are derived for the convergence of the discrete time Kalman filter 
estimate to the continuous time estimate as the temporal discretization is refined. This result 
is established for various types of linear systems. Secondly, we derive the optimal one-step 
state estimate that takes values in a given finite dimensional subspace of the system's state 
space for a linear discrete-time system with Gaussian input and output noise. An upper bound 
is given for the error due to the spatial discretization. 

Keywords Infinite dimensional systems, boundary control systems, passive systems, well-
posedness, state estimation, Kalman filter, spatial discretization, temporal 
discretization 

ISBN (printed) 978-952-60-5909-9 ISBN (pdf) 978-952-60-5910-5 

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 

Location of publisher Helsinki Location of printing Helsinki Year 2014 

Pages 157 urn http://urn.fi/URN:ISBN:978-952-60-5910-5 





Tiivistelmä 
Aalto-yliopisto, PL 11000, 00076 Aalto  www.aalto.fi 

Tekijä 
Atte Aalto 
Väitöskirjan nimi 
Ääretönulotteiset systeemit: passiivisuus ja Kalman-suotimen diskretointi 
Julkaisija Perustieteiden korkeakoulu 
Yksikkö Matematiikan ja systeemianalyysin laitos 

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 160/2014 

Tutkimusala Mekaniikka 

Käsikirjoituksen pvm 19.08.2014 Väitöspäivä 28.11.2014 

Julkaisuluvan myöntämispäivä 07.10.2014 Kieli Englanti 

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit) 

Tiivistelmä 
Väitöskirjan tulokset voidaan jakaa kahteen luokkaan, reunakontrollisysteemien 

hyvinasetettuus ja passiivisuus sekä Kalman-suotimen diskretointi. Työssä osoitetaan, että 
hyvinasetettuja impedanssipassiivisia reunakontrollisysteemejä Kirchhoffin lakien kaltaisilla 
ehdoilla kytkemällä aikaansaatu kompositiosysteemi on myös hyvinasetettu 
impedanssipassiivinen reunakontrollisysteemi. Työssä määritellään myös passiivisen 
majorantin käsite ja näytetään, että reunakontrollisysteemi, jolla on passiivinen majorantti on 
hyvinasetettu ja passiivinen. 
 
Sekä aika- että paikkadiskretoinnin vaikutusta Kalman-suodatukseen tarkastellaan. Ensin 
johdetaan suppenemisnopeusestimaatteja diskreettiaikaisen Kalman-suotimen antamalle 
tilaestimaatille, joka konvergoi jatkuva-aikaiseen tilaestimaattiin, kun aika-askellusta 
tihennetään. Tämä tulos johdetaan useille erilaisille lineaarisille systeemeille. Toiseksi 
johdetaan optimaalinen yksiaskeltilaestimaatti annetussa tila-avaruuden äärellisulotteisessa 
aliavaruudessa lineaariselle diskreettiaikaiselle systeemille, johon vaikuttaa Gaussinen 
kohinaprosessi tilaan ja systeemin ulostuloon. Työssä johdetaan myös yläraja 
paikkadiskretoinnista johtuvalle virheelle tilaestimaatissa. 

Avainsanat ääretönulotteiset systeemit, reunakontrollisysteemit, passiiviset systeemit, 
hyvinasetettuus, tilaestimointi, Kalman-suodin, paikkadiskretointi, 
aikadiskretointi 

ISBN (painettu) 978-952-60-5909-9 ISBN (pdf) 978-952-60-5910-5 

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942 

Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2014 

Sivumäärä 157 urn http://urn.fi/URN:ISBN:978-952-60-5910-5 





Preface
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Finnish Graduate School in Engineering Mechanics for funding during 2010–
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along the way, and my supervisor, Prof. Rolf Stenberg for valuable help espe-
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Prof. Alessandro Macchelli and Dr. Philippe Moireau for reviewing the thesis
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1. Introduction

Systems theory is a field of mathematics and engineering studying phenomena

that can be controlled and observed through particular external signals. The

underlying physical system is often called a plant. The signal affecting the sys-

tem is called input and the observed signal is called output. This is illustrated

on the left in Figure 1.1. At the end of Section 1.1, we list different types of

problems that are typically addressed in mathematical systems theory. Let us

take here a more historical perspective and present the example that led to the

emergence of mathematical systems theory. In the example, the plant being

controlled is a steam engine with varying load. The input u is the opening

of the valve controlling the steam flow to the engine. The output y is the

rotational speed of the engine. Of course if the valve is not adjusted when the

engine load increases, the engine will slow down. To compensate the variations

in the load, one can design a controller that somehow converts the output to

an input signal in such a manner that reducing the rotational speed makes the

valve open and vice versa. This principle is called feedback control and it is

illustrated on the right in Figure 1.1, with K denoting the controller. James

Watt designed a feedback controller for the steam engine, called a centrifugal

governor. In his design, there are two masses attached to rods which, in turn,

are attached to a central axle by a hinge mechanism. The rotation of the axle

causes a centrifugal force pushing the two masses away from the axle, and the

hinge mechanism converts this movement into a control of the valve.

� �u y
PLANT

�

� �

u

y
PLANT

K

Figure 1.1. Left: A system with input u and output y. Right: The principle of feedback
control.
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Introduction

Watt’s controller was by no means the first feedback control mechanism

ever developed, but its occasional instability prompted James Maxwell to do

research on the matter. In his article [36] from 1868, titled “On governors”, he

noted that the motion of the controlled system consists of a steady motion and

an additive perturbation. He divided these perturbations into four categories:

increasing, diminishing, oscillation with increasing amplitude, and oscillation

with diminishing amplitude. In short, he then derives differential equations

and the corresponding characteristic polynomials for the coupled mechanical

systems and concludes that for the system to be stable, the real parts of the

roots of the characteristic polynomial must be negative. Maxwell’s article is

usually regarded as the starting point of mathematical systems theory.

This example also illuminates the methodology of mathematical systems the-

ory. The first task in control problems is to develop a mathematical model

for the plant. This modeling can be based on physical considerations, as in

Maxwell’s case, or it can be a so-called black box model, which is constructed

by feeding some input signals into the system, and measuring the correspond-

ing output. A model with some pre-defined structure is then fitted to the

data. The mathematical model is then used for solving the problem at hand.

One widely used representation for mathematical models is the state space

representation. It is also used in this thesis and it is introduced in the next

section.

1.1 Linear state space approach

In the state space representation it is assumed that all the essential informa-

tion on the state of the plant can be represented as a vector called the state of

the system. The vector space where the state takes values is called the state

space and it can be either finite or infinite dimensional. The state is assumed

to have some kind of dynamics in discrete or continuous time. These dynamics

equations can be linear or nonlinear. The results of this thesis are exclusively

concerned with linear state space models whose dynamics are formally gov-

erned by differential equations of the form⎧⎪⎨⎪⎩
d
dtx(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t)
(1.1)

or, in the discrete time setting, by difference equations (2.10), see Section 2.2

below. The state of the system is x, and u and y are the input and the output,
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Introduction

respectively. It is assumed that x ∈ X , u ∈ U , and y ∈ Y where X is the state

space, U the input space, and Y the output space and they are all assumed to

be separable Hilbert spaces. Thus the linear system can be represented as a

block operator and the corresponding spaces,

S :=
[
A B
C D

]
: X × U → X × Y. (1.2)

The operator A is called the main operator, B is the input or control operator,

C the output or observation operator, and D the feedthrough operator.

In the case when X and U are finite dimensional, the solution to (1.1) is given

by the matrix exponential and the so-called variation of parameters formula,

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s) ds, (1.3)

assuming u ∈ L2(R+;Rm). Even this regularity assumption can be relaxed if

the integral is understood in a more general sense; for example if u is white

noise, then (1.3) has to be replaced by a Wiener integral.

To give a hint of what kind of problems are addressed in classical systems

theory, let us give a non-exhaustive list, together with some classical examples

and both historical and state-of-the-art references.

• Well-posedness: In (1.3) we already provided the solution to (1.1) if our

system is finite dimensional. It is also rather easy to check that this solution

is differentiable one time more than the input signal u. However, when

the system is infinite dimensional then establishing the solvability of the

dynamics equations and the smoothness of solutions can be far from trivial.

These kinds of problems are typically known as well-posedness problems. In

particular, when the system dynamics are governed by partial differential

equations with control action through time-dependent boundary conditions,

the control operator B is unbounded. The well-posedness of these boundary

control systems is the subject of publications I and IV and so a more thorough

introduction is given in Section 2.1.

• Stability and stabilization: The stability of a steam engine controlled by

a governor system was already the topic of Maxwell’s paper [36]. The differ-

ent stability concepts and related results for infinite dimensional systems are

discussed in [40] by Pritchard and Zabczyk and [49, Chapter 8] by Staffans.

To give some intuition, we note that a finite dimensional system is stable if

the eigenvalues of the matrix A have negative real parts. If u = 0 then for

11
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any x0, the solution of (1.1) converges to zero. Also for any u ∈ L2(R+;U),
the solution x(t) remains bounded.

If the feedback controller in Fig. 1.1 is linear, then plugging u(t) = Ky(t)

to (1.1) gives d
dtx(t) = (A +KC)x(t). It is possible that A has eigenvalues

with positive real parts but A + KC does not. Then K is a stabilizing

feedback controller for the system. For example, the case B = C∗ in (1.1)

is called colocated control/observation. Then the feedback u = −κy with

κ > 0 leads to d
dtx(t) = (A − κC∗C)x(t) and further, d

dt

(
1
2 ||x(t)||2X

)
=

〈x(t), Ax(t)〉X −κ ||Cx(t)||2Y . Clearly such feedback has a stabilizing effect on

the system, see [10] by Curtain and Weiss.

• Controllability and observability of systems: A fundamental question

related to a system is whether for any vectors x0 ∈ X and x1 ∈ X there exists

a control signal u so that x(T ) = x1 for some T . This property is called exact

controllability at time T . In particular, in infinite dimensions, it is a rather

strong property, and other, weaker notions exist, see [52, Chapter 11].

With linear systems, the dual concept of controllability is observability.

The observability at time T can be defined so that any initial state can

be distinguished from the corresponding output on time interval [0, T ] (if

u = 0). However, in literature, the characterization

∫ T

0
||CT (t)x0||2Y dt ≥ kT ||x0||2X

is often taken as the definition of exact observability at time T . This is

equivalent to the existence of a bounded operator K ∈ L(L2([0, T ];Y),X ),

such that x0 = Ky, see [52, Remark 6.1.5].

In finite dimensions (dim(X ) = n), the exact controllability is equivalent

to the Kalman rank condition, that is, rank
(
[B|AB|A2B|...|An−1B]

)
= n.

The exact observability is equivalent to rank

([
C
...

CAn−1

])
= n.

For recent results on controllability and observability, see for example [27]

by Li et al. for results on systems governed by partial differential equations,

and [57] by Weiss and Zhao for results on coupled systems.

• Optimal control: One typical control problem is how to choose the control

signal u so that some cost functional is minimized. This field is so wide that

we only mention the classical problem with quadratic cost function

J = 〈x(T ), PTx(T )〉X +

∫ T

0

( 〈x(t), Qx(t)〉X + 〈u(t), Ru(t)〉U
)
dt

12
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where PT , Q ∈ L(X ), and R ∈ L(U) are positive and self-adjoint opera-

tors. It is well known that this is a dual problem to Kalman–Bucy filtering,

discussed in Chapter 3. Under sufficient assumptions, the solution to this

optimal control problem is given by the feedback u(t) = K(t)y(t) where K(t)

corresponds to the Kalman gain in the dual problem (see Section 3.2).

An interesting problem type is optimal control of systems with stochastic

inputs. For recent progress, see [14] by Duncan et al. studying the linear

quadratic control problem with fractional Brownian motion input and [37]

by Muradore and Picci studying control strategies that are robust under

stochastic disturbances.

• State estimation: In state estimation problems, the task is to estimate

the state variable x(t) when we are given the output (possibly corrupted by

noise). Often also the input u might be partially or wholly unknown to us,

thereby making the state estimation more difficult.

The case with input and output corrupted by additive white noise is some-

what classical. The solution minimizing the estimation error variance is

given by the Kalman filter, derived in 1960 in [23] by Kalman for discrete

time systems and by Kalman and Bucy in 1961 in [24] in the continuous time

setting. The timing of the results was perfect — the space race was booming

and the method’s potential in spaceflight trajectory estimation was quickly

discovered. Even today, the Kalman filter is advocated for this renowned

application, see [17] by Grewal and Andrews for the whole story. The infi-

nite dimensional Kalman filter is the subject of publications II and III and

so it will be presented in more detail in Chapter 3.

Another well-known class of state estimation methods are the H∞-tech-

niques that are — loosely speaking — based on minimizing the “gain” from

noise to estimation error. For an introduction, see [46, Chapter 11] by Simon,

and for a recent study on infinite dimensional systems, see [8] by Chapelle

et al.

In the case the observations are not corrupted by noise, the state estimators

are typically called observers. Perhaps the best-known class of observers are

the Luenberger observers, see [28], that are based on updating the state esti-

mate x̂(t) proportionally to the measurement discrepancy y(t)−Cx̂(t). For

recent development, see [42] by Ramdani et al. studying observers when the

output operator C is not necessarily bounded, and [19] by Haine discussing

observers in case the system is not exactly observable.
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1.2 On the thesis

The results in the articles of this thesis can be divided into two categories — the

well-posedness and passivity of boundary control systems is studied in publica-

tions I and IV and the effect of temporal and spatial discretization to Kalman

filtering is studied in publications II and III, respectively. In publication I,

it is shown that a composition of passive boundary control systems through

Kirchhoff couplings is also a passive boundary control system. The results of

publication IV essentially say that adding either boundary or state dissipation

to a boundary control system preserves the system’s well-posedness. Publica-

tion II treats the discrete time Kalman filter state estimate’s convergence to

the continuous time estimate as the temporal discretization is refined. Spatial

discretization error in Kalman filtering is the subject of publication III. An

optimal one step reduced-order state estimate is derived together with a bound

for the discretization error. The main results of the publications are further

discussed in Chapter 4.

Basic background on infinite dimensional linear systems is presented in Chap-

ter 2, first for continuous time setting in Section 2.1 and then shortly for dis-

crete time setting in Section 2.2. The background for the treatment of bound-

ary control systems is given in Sections 2.1.2 and 2.1.3 — emphasis being on

the well-posedness of systems. The Kalman filter is presented in Chapter 3.

In Section 3.2, we derive the Kalman filter equations when the state space

X is infinite dimensional but the output space Y is finite dimensional. The

required background on Gaussian random variables is given in Section 3.1.

The reader is assumed to have knowledge on elementary functional analysis

and stochastics (including treatment of random variables in Hilbert spaces).

For introductory representations on these subjects, we refer to [25], and [53] or

[11], respectively. For more comprehensive background on infinite dimensional

linear systems, see [49].

Notation

Denote by L(H1,H2) the space of bounded linear operators from normed space

H1 toH2. Also denote L(H) = L(H,H). The domain of an operator is denoted

by D(·), the null space by N (·), and the range by R(·). The resolvent set of A
is denoted by ρ(A) and the resolvent is R(λ,A) = (λ − A)−1. The spectrum

of an operator is denoted by σ(·) and the point spectrum by σp(·).

14



2. Infinite dimensional linear systems

The results of the thesis are all related to infinite dimensional linear sys-

tems, which are introduced in this chapter. The concept of well-posedness

of systems will be discussed and the notion of semigroup will be introduced

in Section 2.1.1. The results of publication II are more or less based on the

semigroup approach and it is also needed in the further development of the

system node concept and finally, boundary control systems. Publications I

and IV treat well-posedness of boundary control systems and so emphasis will

be given do the description of boundary control systems and well-posedness of

infinite dimensional systems. In particular, the results of publications I and

IV rely heavily on the results of [34] by Malinen and Staffans and so those

results are reviewed in Section 2.1.3.

Finally, as discrete time systems are studied in publication III, some back-

ground will be given in Section 2.2. There we also go through some stability

concepts that of course have their continuous time counterparts; but as they

are not needed in the thesis, we only present the discrete time versions.

2.1 Continuous time systems

2.1.1 Semigroups and well-posedness

When the state space is infinite dimensional, the operator A in the formal

equations (1.1) is often not bounded. Typically this is the case if the system

dynamics are governed by partial differential equations when A is some kind

of differential operator. Then, unlike in the finite dimensional setting, even

the simple, homogeneous equation

d

dt
x(t) = Ax(t), x(0) = x0 (2.1)

15



Infinite dimensional linear systems

gives rise to numerous problems, starting from the unique existence and smooth-

ness of the solution. Loosely speaking, these are known as well-posedness

problems.

Firstly, a classical solution is defined as a function satisfying (2.1), such that

x ∈ C1(R+;X ) and x(t) ∈ D(A) for all t ≥ 0. However, it is often desirable to

formally study equation (2.1) when x0 is not necessarily in D(A). To this end,

we define a mild solution of (2.1) to be a function x ∈ C(R+;X ) satisfying

∫ t

0
x(s) ds ∈ D(A) and x(t)− x0 = A

∫ t

0
x(s) ds

for all t ≥ 0 where the integrals are Bochner integrals, see e.g., [1, Section 1.1].

The definition of well-posedness of a system varies depending on what we

are interested in. Typically it is somehow related to the unique existence and

smoothness of solutions. For the homogeneous time evolution problem, we

adopt the following definition, due to [11, Section A.1]:

Definition 2.1.1. The time evolution problem (2.1), also known as Cauchy

problem, is said to be well-posed if:

(i) for any x0 ∈ D(A), there exists a unique strongly differentiable (in X )

function x(t, x0) satisfying (2.1) for all t ≥ 0;

(ii) for {xn} ⊂ D(A) with xn → 0 strongly in X it holds that x(t, xn) → 0

strongly in X for all t ≥ 0.

This definition gives rise to the notion of the semigroup generated by the

operator A.

Definition 2.1.2. If the problem (2.1) is well-posed, define the semigroup

generated by A as the operator-valued function T (t), that satisfies

T (t)x0 := x(t, x0), t ≥ 0

for x0 ∈ D(A) where x(t, x0) is defined in part (i) of Definition 2.1.1.

The fact that T (t) actually defines a linear operator in D(A) is easy to see

by the linearity of differentiation. The semigroup T (t) was defined in D(A)
but by property (ii) in Definition 2.1.1, it can be uniquely extended to a

bounded linear operator in the whole space X . Henceforth T (t) stands for

this extension. This operator-valued function has the following well-known

16



Infinite dimensional linear systems

properties:

• T (0) = I, (2.2)

• T (t+ s) = T (t)T (s) for t, s ≥ 0, (2.3)

• for any x ∈ X , the function T (t)x is strongly continuous in X . (2.4)

Note that strong differentiability in X holds only for x ∈ D(A).
Here we started with the formal equation (2.1) and ended up with a definition

of a semigroup. However, we could also define a C0-semigroup as an L(X )-

valued function satisfying the three conditions (2.2)–(2.4). If we are given such

a function then the infinitesimal generator of the semigroup can be defined as

follows (see [11, (A.7)]):

Definition 2.1.3. Let T (t) be an operator-valued function satisfying condi-

tions (2.2)–(2.4). Define the domain of the infinitesimal generator A of the

semigroup T (t) as

D(A) :=
{
x ∈ X : lim

h→0

T (h)x− x

h
exists (in strong sense) in X

}
and in D(A) define A as the limit, that is,

Ax := lim
h→0

T (h)x− x

h
.

The infinitesimal generator given by the above equation is an extension of the

original A in (2.1) but here we don’t make the distinction between them.

Thus the well-posedness of the problem (2.1), as defined in Definition 2.1.1,

means that the time evolution operator A is the generator of a C0-semigroup.

Perhaps the best-known characterization for C0-semigroup generators is given

by the Hille–Yosida theorem [1, Thm. 3.3.4]:

Theorem 2.1.1. Hille–Yosida. Let A be a closed, densely defined operator

on X . Then it is the generator of a C0-semigroup if and only if there exists

ω ∈ R and M > 0 such that

∣∣∣∣(λI −A)−n
∣∣∣∣
L(X )

≤ M

(λ− ω)n
for all n ∈ N and λ > ω.

A C0-semigroup is called contractive if ||T (t)||L(X ) ≤ 1 for all t ≥ 0. Con-

tractivity is related to the stability of the system and so it is a somewhat

fundamental property. It is also a standing assumption in publication II that

the system dynamics are governed by a contractive semigroup. A characteri-

zation for generators of contractive semigroups is given by the Lumer–Phillips

17



Infinite dimensional linear systems

theorem, originally presented in [31] but it can also be found for example in

[1, Thm. 3.4.5]:

Theorem 2.1.2. Lumer–Phillips. Let A be a closed, densely defined oper-

ator on X . Then it is the generator of a contractive C0-semigroup iff

(i) A is dissipative, meaning that for all λ > 0 and x ∈ D(A),

||(λI −A)x||X ≥ λ ||x||X ; and

(ii) A is maximal in the sense that λ0I −A is surjective for some λ0 > 0.

One widely studied class of systems are such that the main operator A

generates an analytic semigroup, that is, a semigroup that can be extended

to a sector t ∈ {
λ ∈ C : | arg(λ)| ≤ θ

}
for some θ < π/2 in such a way that

conditions (2.2)–(2.4) hold in the whole sector. Analytic semigroups are also

studied in Section 3.4 of publication II and so we give here their definition

following [9, Definition 2.27], and present some of their properties.

Definition 2.1.4. A C0-semigroup T (t) is analytic if

(i) T (t) can be continued analytically to a sector
{
λ ∈ C : | arg(λ)| ≤ θ

}
for

some θ < π/2;

(ii) for all t ∈ {
λ ∈ C : | arg(λ)| ≤ θ

}
, and t 	= 0, it holds that AT (t) ∈ L(X ),

and for any x ∈ X ,
d

dt
T (t)x = AT (t)x;

(iii) ||T (t)||L(X ) is uniformly bounded and ||AT (t)||L(X ) ≤ M
|t| for all t ∈ {

λ ∈
C : | arg(λ)| ≤ θ

}
for some M > 0.

Proposition 2.1.1. Let A be the infinitesimal generator of an analytic semi-

group T (t). Then

(i) the semigroup is given by T (0) = I and

T (t) =
1

2πi

∫
γ
eλt(λ−A)−1dλ, t > 0

18
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where γ(·) is the path defined by parametrization γ(s) =

⎧⎨⎩ −se−iθ for s < 0,

seiθ for s ≥ 0

where θ ∈ (π/2, θ0).

(ii) for any t > 0 and x ∈ X , T (t)x ∈ D(Ak) for all k ∈ N, and for each k

there exists a constant c(k), such that

∣∣∣∣∣∣AkT (t)
∣∣∣∣∣∣
L(X )

≤ c(k)

tk
, for t > 0;

(iii) if, in addition, −A is sectorial (see [1, Section 3.8]) then the above bound

holds also for non-integer k, if Ak is replaced by (−A)k.

For a proof of part (i), see [1, (3.46)]. For parts (ii) and (iii), see [51, Thms.

3.3.1 & 3.3.3].

Let us finish this section by discussing the full system (1.1) under the as-

sumption that A is the generator of a C0-semigroup T (·) : R+ → L(X ). In

the case B ∈ L(U ,X ), nothing is really changed compared to the finite dimen-

sional case, and the solution to (1.1) is given by (1.3) with eAt replaced by

the general semigroup T (t), see, for example [1, Chapter 3]. However, if for

example the system under consideration is governed by a partial differential

equation with control action inflicting through the boundary conditions, then

the input operator B is not bounded. To be able to study such systems, we

proceed to introduce a more general framework of system nodes.

2.1.2 Operator and system nodes

Above we worked with the system’s state space X and the domain of the main

operator, D(A). In this section we define the rigged spaces Xj for j ∈ Z,

following [49, Section 3.6] and present the system node realization following

[49, Section 4.7]. Let us also mention [44] and [45] by Salamon and [56] by

Weiss as historical references on realization theory on Hilbert spaces. For more

references, see the discussion sections 3.15 and 4.11 of [49].

If A is closed — as is usually assumed — then also D(A) can be made

a Hilbert space if it is equipped with the graph norm ||x||2D(A) := ||x||2X +

||Ax||2X or, assuming the resolvent set ρ(A) is nonempty, with norm ||x||D(A) =

||(α−A)x||X with some α ∈ ρ(A). Note that different selection of α gives

an equivalent norm to D(A). Let us denote X1 := D(A) and use there the

latter norm. Then (α − A)−1 maps X isometrically to X1. Following [35,

Proposition 2.1], define also the space X−1 as the completion of X with respect
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to the norm ||x||X−1
:=

∣∣∣∣(α−A)−1x
∣∣∣∣
X . By iteration of this construction, we

can define spaces Xj for any j ∈ Z with Xj ⊂ Xk if j ≤ k with a dense inclusion.

Also it is possible to uniquely extend (or restrict) A and the corresponding

semigroup T (t) to Aj ∈ L(Xj+1,Xj) and Tj(t) ∈ L(Xj), respectively.

After these preparations, we are now ready to extend the block notion (1.2)

to cases where the input and output operators are not necessarily bounded.

Definition 2.1.5. Let X , U , and Y be Hilbert spaces. A block operator

S =
[
A&B
C&D

]
: X × U → X × Y

is called an operator node on (U ,X ,Y) if it has the following structure:

(i) A is a closed, densely defined operator on X with a nonempty resolvent set.

(ii) B ∈ L(U ,X−1).

(iii) D(S) := {[ xu ] ∈ X × U : A−1x+Bu ∈ X} where A−1 is the extension

of A as described above. D(S) is equipped with the graph norm

||[ xu ]||2D(S) := ||A−1x+Bu||2X + ||x||2X + ||u||2U .

(iv) C&D ∈ L(D(S),Y).

If, in addition, A generates a C0-semigroup on X , then S is called a system

node.

If S is a system node on (U ,X ,Y) then for each x0 ∈ X and u ∈ C2(R+;U)
with

[ x0

u(0)

] ∈ D(S) the formal equations (1.1) have a unique solution x ∈
C1(R+;X ) such that [ xu ] ∈ C(R+;D(S)). This result can be found for example

in [33, Lemma 2.2] but for a proof they refer to [49, Lemma 4.7.8].

Many systems satisfy different types of conservation laws that can be utilized

when determining the solvability of a given system. An important conservation

law is energy preservation:

Definition 2.1.6. A system node is scattering passive if for all x0 and u

satisfying the conditions in the paragraph above, and for all t ≥ 0, the solutions

of (1.1) satisfy

||x(t)||2X − ||x0||2X ≤ ||u||2L2((0,t);U) − ||y||2L2((0,t);Y) . (2.5)

A system node is scattering energy preserving if this holds as an equality.
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Many characterizations for energy preserving systems an be found in [35,

Section 3]. It is clear from the definition that the semigroup corresponding to

a scattering passive system node is contractive.

An alternative framework for the presented system node setting is provided

by the so-called port-Hamiltonian systems, that has been a very active field of

research during the last fifteen years. Port-Hamiltonian systems form a unified

approach for treating linear and nonlinear, and finite and infinite dimensional

systems (including boundary control systems). The key idea is to utilize the

systems’ inherent conservation laws and to break the system at hand into com-

ponents representing (Hamiltonian) “energy storages” and power conserving

interconnections (through ports) between these storages. For an introduction,

see the doctoral theses [32] by Macchelli or [54] by Villegas.

2.1.3 Boundary control systems

Boundary control systems are typically systems whose dynamics are governed

by partial differential equations and the control action to them is inflicted

through time-dependent boundary conditions. In principle, the system node

framework allows treatment of such systems but these systems do not naturally

adopt the form (1.1). So let us introduce slightly different looking dynamics

equations: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dtz(t) = Lz(t), t ≥ 0,

Gz(t) = u(t),

y(t) = Kz(t).

(2.6)

That is, the dynamics are not entirely governed by the first equation but an

additional requirement Gz(t) = u(t) has to be imposed for unique solvability.

In a typical example, the operator G is a trace operator, and so this additional

requirement consists of the boundary conditions for a partial differential equa-

tion. In this formalism, the operator L is called the interior operator, G the

input boundary operator, and K the output boundary operator. This theoret-

ical framework originates from [15] by Fattorini and [44] by Salamon. Our

presentation is close to that of Malinen and Staffans in [33] and [34]. Related

to equations of the form (2.6), we make the following definition.

Definition 2.1.7. A triple of linear mappings (G,L,K) on Hilbert spaces

(U ,X ,Y) with the same domain Z ⊂ X is called a colligation. A colligation is

strong if L is closed with D(L) = Z, and G and K are continuous with respect

to the graph norm of L on Z. The space Z is called the solution space.

A colligation is a boundary node if it has the following structure:
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(i) The block operator
[
G
L
K

]
: X → U × X × Y is closed;

(ii) G is surjective and its null space N (G) is dense in X ;

(iii) The operator A := L|N (G) has a nonempty resolvent set ρ(A);

The boundary node is internally well-posed if in addition, A generates a C0-

semigroup.

Theorems 2.3 and 2.4 of [33] imply that every boundary node induces an

operator node that is“of boundary control type”, meaning thatR(B)∩X = {0}
and vice versa — every operator node that is of boundary control type induces

a boundary node. The boundary node is internally well-posed if and only if

the corresponding operator node is a system node. When this is the case, the

solutions to respective equations (1.1) and (2.6) coincide.

From Definition 2.1.7 it is evident that
[

G
α−L

]
is surjective for α ∈ ρ(A).

Now regard α as fixed. Then there exists a right inverse for G, such that

LG−1right = αG−1right. In fact, by the proof of [33, Thm. 2.3], this inverse is given

by G−1right = (α − A−1)−1B. So the solution space can be decomposed into a

direct sum

Z = X1 ⊕G−1rightU ,

that is, into components X1 = N (G) and another part taking care of the

boundary conditions. We also have a bijective mapping and its inverse between

Z and its decomposition:

[
I−G−1

rightG

G

]
: Z → X1 × U and

[
I G−1right

]
: X1 × U → Z.

The Cauchy problem associated with the boundary control system (2.6) can

now be taken from the space Z to the decomposed space X1 × U . It can be

solved there and the obtained solution can be taken back to Z. This method

is not used in the thesis but here it is presented. The interior operator can be

split according to this decomposition,

Lz = L
(
I −G−1rightG

)
z + LG−1rightGz = A

(
I −G−1rightG

)
z + αG−1rightGz,

and following this splitting, we write the time derivative of the X1-component
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in the space X :

d

dt

(
I −G−1rightG

)
z(t) =

d

dt
z(t)−G−1right

d

dt
u(t) = Lz(t)−G−1rightu̇(t)

= A
(
I −G−1rightG

)
z(t) +G−1right

(
αu(t)− u̇(t)

)
.

Consider now the Cauchy problem in the decomposed space X ×U . Equations
(2.6) can be formulated in the decomposed space⎧⎪⎪⎨⎪⎪⎩

d
dt [

x
u ] (t) =

[
A αG−1

right

0 0

]
[ xu ] (t) +

[
−G−1

right

I

]
u̇(t)

[ xu ] (0) =
[
I−G−1

rightG

G

]
z0.

(2.7)

This formulation resembles (1.1). The new control operator
[
−G−1

right

I

]
is

bounded from U to X × U but that is obtained at the cost of one tempo-

ral derivative in the input signal u.

Theorem 2.1.3. The operator Ã :=
[
A αG−1

right

0 0

]
: X×U → X×U with domain

X1 × U generates a C0-semigroup T̃ (t) on X × U .

Proof. We use the Hille-Yosida theorem 2.1.1. The resolvent of Ã is R(λ, Ã) =[
R(λ,A) α

λ
R(λ,A)G−1

right

0 λ−1

]
. For some ω > 0 we have ||(λ− ω)nR(λ,A)||L(X ) < M

for all λ > ω and n ∈ N and we need to find a similar uniform bound for the

resolvent of Ã. For that we have

(λ− ω)nR(λ, Ã)n =

[
(λ−ω)nR(λ,A)n α

λ

∑n
j=1(

λ−ω
λ )

n−j
(λ−ω)jR(λ,A)jG−1

right

0 (λ−ω
λ )

n

]
.

The only nontrivial element is the one in the upper right corner and for that

we have a uniform bound∣∣∣∣∣∣
∣∣∣∣∣∣αλ

n∑
j=1

(
λ− ω

λ

)n−j
(λ− ω)jR(λ,A)jG−1right

∣∣∣∣∣∣
∣∣∣∣∣∣
L(U ,X )

≤ α

λ
M

∣∣∣∣∣∣G−1right

∣∣∣∣∣∣
L(U ,X )

n∑
j=1

(
λ− ω

λ

)n−j
≤ α

ω
M

∣∣∣∣∣∣G−1right

∣∣∣∣∣∣
L(U ,X )

.

The semigroup generated by Ã is given by T̃ (t) =
[
T (t) α

∫ t
0 T (u)G−1

right du

0 I

]
where the integral is a Bochner integral computed in X but with value in X1

and T (t) is the semigroup generated by A. The solution to (2.6) is then given

by z(t) = Ta(t)z0 +

∫ t

0
Tb(t− s)u̇(s) ds where

Ta(t) = T (t)
(
I −G−1rightG

)
+

(
α

∫ t

0
T (u) du + I

)
G−1rightG
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and Tb(t− s) = (I − T (t− s))G−1right + α

∫ t−s

0
T (u) duG−1right.

We remark that the definition of energy preservation/passivity (Def. 2.1.6)

above did not have any references to the system operators and so the same def-

inition is directly extended to internally well-posed boundary nodes. Related

to energy preservation, let us also define conservativity following [33]:

Definition 2.1.8. The time-flow inverse of a given colligation Ξ = (G,L,K)

on spaces (U ,X ,Y) with domain Z is given by (K,−L,G) on (Y,X ,U) with

the same domain Z.
The boundary node is scattering conservative if both Ξ and its time-flow

inverse are scattering energy preserving.

The reason we have used the term “scattering” when talking about energy

preservation is that the energy inequality (2.5) is not the only naturally arising

alternative. So opposed to scattering type systems, let us introduce impedance

type systems assuming U and Y are a dual pair. In the impedance formulation,

if the system equations have a solution z(t) then, instead of (2.5), the energy

passivity is characterized by the inequality

d

dt

(
1

2
||z(t)||2X

)
≤ 〈y(t), u(t)〉(Y,U) . (2.8)

The expression 1
2 ||z(t)||2X is interpreted as the energy stored in the system

and the right hand side is the instantaneous power inflicted. For example, in

electric circuits the input u might be some control voltage and the output y the

corresponding current — the inflicted power is then their product (recall the

well-known formula P = UI). Other examples are acoustics (see the example

in Section 5 of article I), where the input and output variables in impedance

form would be the pressure and flow, and in mechanical systems, the inflicted

force and velocity.

In article [34], it is noted that impedance type systems are obtained from

scattering type systems by the external Cayley transform. They also define

impedance passivity (and conservativity) through the Cayley transform. How-

ever, a more straightforward definition often serves the purpose better, and so

we adopt the following definition, due to [34, Theorem 3.4]:

Definition 2.1.9. Let Ξ = (G,L,K) be a colligation on Hilbert spaces (U ,X ,Y).

(i) Ξ is impedance passive if the following conditions hold:

(a)
[
βG+K
α−L

]
is surjective for some α, β ∈ C

+;
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(b) For all z ∈ D(Ξ) we have the Green–Lagrange inequality

�〈z, Lz〉X ≤ �〈Kz,Gz
〉
(Y,U). (2.9)

(ii) Impedance passive Ξ is impedance conservative if (2.9) holds as an equal-

ity, and (a) holds also for some α, β ∈ C
−.

Note that the concept of impedance passivity does not require internal well-

posedness. If Ξ is internally well-posed, then (2.9) is equivalent to (2.8). It is

evident by (2.8) that the semigroup of an impedance passive boundary con-

trol system is contractive. Impedance passivity and also the Green–Lagrange

inequality alone can be used for confirming the internal well-posedness using

the following results, due to [34, Theorems 4.3 and 4.7]:

Theorem 2.1.4. Let Ξ = (G,L,K) be a strong colligation on spaces (U ,X ,Y)
with domain Z where U and Y are a dual pair.

(i) Assume that (2.9) holds for all z ∈ Z. If
[

G
α−L

]
is surjective for some

α ∈ C with �(α) ≥ 0 then Ξ is an internally well-posed, impedance passive

boundary node.

(ii) Assume Ξ is impedance passive. Then it is internally well-posed if and

only if G is surjective.

2.2 Discrete time systems

The dynamics of a discrete time system are governed by difference equations⎧⎪⎨⎪⎩xk = Axk−1 +Buk

yk = Cxk +Duk.
(2.10)

In some sense the theory of infinite dimensional discrete time systems is not

as rich as that of continuous time systems. The equations are always solvable

and there are no problems caused by unbounded operators.

The solution to the state evolution equation (2.10) is given by

xk = Akx0 +

k−1∑
j=0

AjBuk−j .
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If the input signal u is extended so that uk = 0 for k ≤ 0, the second term

can be written as
∑∞

j=0A
jBuk−j which motivates us to define the input map

B : l2(Z−;U)→ X by {uk}k∈Z− 
→∑∞
j=0A

jBu−j where Z
−= {0,−1,−2, ...}.

Define then the relevant stability concepts.

Definition 2.2.1. The discrete time system composed of the operator quadru-

ple
[
A B
C D

]
and the dynamics equation (2.10) is

(i) exponentially stable if for uk = 0 for all k, it holds that
∑∞

k=1 ||xk||2X <∞
for any initial state x0 ∈ X ;

(ii) asymptotically stable if for uk = 0 for all k, it holds that ||xk||X → 0 as

k →∞ for any initial state x0 ∈ X ;

(iii) output stable if for uk = 0 for all k, it holds that y ∈ l2(Y) for any initial

state x0 ∈ X ;

(iv) input stable if its dual system, composed of
[
A∗ C∗
B∗ D∗

]
, is output stable.

Characterizations for different stability concepts can be found in Opmeer’s

doctoral thesis [38, Chapter 3]. The connection between different stability

concepts and solvability of the Lyapunov equation

S = ASA∗ +W (2.11)

with bounded, self-adjoint load W ∈ L(X ) was studied by Przyluski in his

classic article [41]. Here we present some results on the stability concepts

which are essential considering this thesis, while other results are presented

just to give some insight on the subject.

Theorem 2.2.1. Exponential and asymptotical stability. The following

statements are equivalent:

(i) The discrete time system (2.10) is exponentially stable.

(ii) The spectral radius of A is smaller than one, that is, σ(A) ⊂ D1 where D1

denotes the open unit disc in the complex plane (recall that as A is bounded,

σ(A) is closed).

(iii) The Lyapunov equation (2.11) with load W = I has a nonnegative, self-
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adjoint solution S ∈ L(X ).

In addition, exponential stability implies asymptotical stability and input sta-

bility. Asymptotical stability implies σp(A) ⊂ D1 and σ(A) ⊂ D1.

Theorem 2.2.2. Input stability. The following statements are equivalent:

(i) The discrete time system (2.10) is input stable.

(ii) The input map satisfies B ∈ L(l2(Z−;U),X ).

(iii) The Lyapunov equation (2.11) with load W = BB∗ has a nonnegative,

self-adjoint solution S ∈ L(X ).

In addition, input stability implies that σp(A) ⊂ D(0, 1).

2.2.1 Discretizing continuous time systems

Sometimes the considered real-life system has continuous time dynamics but

for technical reasons we can only observe the output and control the input

with discrete time intervals. Then the system can be transformed to a discrete

time model. Consider the solution (1.3) in the case discussed in the end of

Section 2.1.1, that is, A is the generator of a C0-semigroup T (·) and B ∈
L(U ,X ). Denoting xk := x(kΔt), the solution can be written as

xk = T (Δt)xk−1 +
∫ kΔt

(k−1)Δt
T (t− s)Bu(s) ds.

If we then assume that u(s) is constant uk on the interval s ∈ [(k−1)Δt, kΔt)

then the solution can be written in discrete time form

xk = Adxk−1 +Bduk

where Ad = T (Δt) and Bd =
∫ Δt
0 T (s)B ds. In the general system node setting

with B ∈ L(U ,X−1) it was required that u ∈ C2(R+;U) for the classical solu-

tion to exist. Thus, the piecewise constant u is not smooth enough. However,

the integrated semigroup operator
∫ Δt
0 T (s) ds has a smoothing effect, that is,∫ Δt

0 Tj(s) ds ∈ L(Xj ,Xj+1) where the subindex j refers to the rigged spaces
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discussed in the beginning of Section 2.1.2. In fact, it holds that∣∣∣∣∣∣∣∣∫ Δt

0
Tj(s) ds

∣∣∣∣∣∣∣∣
L(Xj ,Xj+1)

=

∣∣∣∣∣∣∣∣(α−Aj)

∫ Δt

0
Tj(s) ds

∣∣∣∣∣∣∣∣
L(Xj)

≤ |α|Δt sup
s∈[0,Δt]

||Tj(s)||L(Xj)
+ ||Tj(Δt)− I||L(Xj)

.

So even B ∈ L(U ,X−1) yields a bounded discrete time input operator Bd ∈
L(U ,X ) with this so-called “zero-order-hold” discretization. Note that care

must be taken when choosing the output of the discretized system. If also the

output is a boundary observation, then C ∈ L(X1,Y) and then Cxk is not

well defined. However, integrating the state x(s) from (k − 1)Δt to kΔt gives

a vector in X1 and so the discrete output yk can be defined as the average of

y(s) on this interval, that is,

Cdxk−1+Dduk :=
C

Δt

∫ Δt

0

(
T (u)xk−1 +

∫ (k−1)Δt+u

(k−1)Δt
T (t− s)Buk ds

)
du+Duk.

The discretization given above is accurate, given that the input actually

is piecewise constant. However, actually computing T (Δt) might be impos-

sible and one typically needs to rely on approximative schemes. A widely

used method for approximating the discrete operators is given by the Cayley

transform where Ad = (σ + A)(σ − A)−1 and Bd =
√
2σ(σ − A−1)−1B with

σ = 2/Δt. This method is studied in [6] by Besseling and in [20] by Havu and

Malinen from the point of view of mathematical systems theory.
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3. Infinite dimensional Kalman filter

In this chapter we introduce the discrete time Kalman filter, originally derived

in [23] in the finite dimensional setting. The infinite dimensional generalization

can be found, for example in [21] by Horowitz and [18] by Hager and Horowitz.

It is the subject of publications II and III. Even though we also define the

continuous time state estimate in II, an explicit representation is not needed.

The proofs there make use of the discrete time Kalman filter with non-constant

output operator. For the sake of notational simplicity, we here only treat the

case where the operators do not depend on time. The continuous time variant

is known as the Kalman–Bucy filter which was originally derived in [24]. The

infinite dimensional Kalman–Bucy filter is presented, for example, in [3] by

Bensoussan and in [9, Chapter 6] by Curtain and Pritchard.

The Kalman filter was originally developed for discrete time systems with

noisy input and output: ⎧⎪⎨⎪⎩xk = Axk−1 +Buk

yk = Cxk + wk.
(3.1)

where the input uk and the output noise wk are Gaussian random variables

with values in U and Y, respectively. They are assumed to have mean zero

and covariance operators Q and R, respectively. Also the initial state is an

X -valued Gaussian random variable, x0 ∼ N(m,P0). It is assumed that u, w,

and x0 are mutually independent, and also wk and uk are independent of wj

and uj , respectively, when k 	= j.

In this chapter, we first introduce Gaussian random variables in Section 3.1.

In Section 3.2, we derive the Kalman filter equations assuming that the state

space X is a separable Hilbert space and the output space Y is finite dimen-

sional. Finally, in Section 3.3, we present some results on the Kalman filter

and the corresponding Riccati equations that are needed in publication III.
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3.1 Gaussian random variables

Definition 3.1.1. A random variable v taking values in the Hilbert space X
is said to be Gaussian if 〈v, h〉X is normally distributed for all h ∈ X .

Gaussian random variables are extensively used when modeling uncertainty

and external noise in dynamical systems — partly because they truly are

somewhat fundamental (recall the central limit theorem), but also because

they have so many nice properties making them easy to work with.

Proposition 3.1.1. Let [ xz ] be a Gaussian random variable in Hx×Hz where

Hx and Hz are separable Hilbert spaces. Then the following assertions hold:

(i) Fernique theorem. There exists λ > 0 such that E
(
eλ||x||

2
Hx

)
<∞. As a

corollary, note that E
(||x||nHx

)
<∞ for all n ≥ 1.

(ii) Mean and covariance. There exists a vector [mx
mz ] ∈ Hx × Hz and a

symmetric, nonnegative trace class operator P =
[
Pxx Pxz
Pzx Pzz

]
such that

E

(〈
[ xz ] ,

[
hx
hz

]〉)
=

〈
[mx
mz ] ,

[
hx
hz

]〉
for all

[
hx
hz

]
∈ Hx ×Hz and

E

(〈[
hx1
hz1

]
, [ xz ]

〉〈[
hx2
hz2

]
, [ xz ]

〉)
−

〈
[mx
mz ] ,

[
hx1
hz1

]〉〈
[mx
mz ] ,

[
hx2
hz2

]〉
=

〈[
Pxx Pxz
Pzx Pzz

] [
hx1
hz1

]
,
[
hx2
hz2

]〉
for all

[
hx1
hz1

]
,
[
hx2
hz2

]
∈ Hx ×Hz. Here 〈·, ·〉 = 〈·, ·〉Hx×Hz

.

It holds that E
(
||x−mx||2Hx

)
= tr(Pxx). Also, the properties of a Gaussian

random variable are completely comprised in its mean and covariance. Thus,

it is meaningful to write [ xz ] ∼ N ([mx
mz ] , P ) meaning that [ xz ] is a Gaussian

random variable with mean [mx
mz ] and covariance P .

(iii) Independence. x and z are independent if and only if Pxz = 0. Also if

x̃ and z̃ are independent Gaussian random variables then
[
x̃
z̃

]
is a Gaussian

random variable.

(iv) Conditional expectation. Assume dim(Hz) < ∞. The conditional

expectation of x, given z, is given by

E(x|z) = mx + PxzP
−1
zz (z −mz). (3.2)
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If Pzz is not invertible then P−1zz is replaced by pseudoinverse. The error

covariance is

Cov [x− E(x|z) , x− E(x|z)] = Pxx − PxzP
−1
zz Pzx. (3.3)

The conditional expectation minimizes E

(
||x−mx −K(z −mz))||2Hx

)
over

K ∈ L(Hz,Hx).

(v) Linear combinations. If A ∈ L(Hx,H) and B ∈ L(Hz,H) then

Ax+Bz ∼ N(Amx +Bmz, APxxA
∗ +APxzB

∗ +BPzxA
∗ +BPzzB

∗).

(vi) Estimation. The best linear estimate is the best global estimate, that is,

(3.2) minimizes E
(
||x− f(z)||2Hx

)
over all measurable functions f : Hz → Hx.

For proofs, for part (i), see [11, Theorem 2.6] (also a more general formulation

is presented there). For part (ii), see Lemma 2.14 and Proposition 2.15 in

[11] and the discussion related to those results. Part (iii) follows by studying

the characteristic function of [ xz ]. A proof for the first claim can be found in

[53, Proposition 4.10]. The second claim follows by writing the characteris-

tic function for
[
x̃
z̃

]
and by independence noting that it corresponds to the

characteristic function of a Gaussian random variable with mean
[
E(x̃)
E(z̃)

]
and

covariance
[
Cov[x̃,x̃] 0

0 Cov[z̃,z̃]

]
. Part (v) is easy to see directly from part (ii),

Definition 3.1.1, and properties of Bochner integral (E(·) can be defined as a

Bochner integral in the probability space, see [11, Section 1.1]). Part (vi) is

proved in [9, Lemma 5.13]. Note that the condition (5.12) there is equivalent

to N (Pzz) ⊂ N (Pxz) which is easy to confirm if [ xz ] is Gaussian.

A simple proof for (iv) (in the desired case when Hx is not necessarily finite

dimensional) seems to be hard to find in the literature, so let us present steps

leading to the proof. Firstly, E(x|z) is the unique element that is measurable

with respect to the sigma algebra generated by z, for which x−E(x|z) and z are

independent. Clearly mx +PxzP
−1
zz (z−mz) is measurable with respect to the

sigma algebra generated by z. Now
[
x−(mx+PxzP

−1
zz (z−mz))

z

]
is also Gaussian

so that independence of z and mx + PxzP
−1
zz (z −mz) can be verified by (iii):

Cov
[
x− (mx + PxzP

−1
zz (z −mz)), z

]
= Cov [x, z]− Cov

[
PxzP

−1
zz z, z

]
= 0.

In case Pzz is not invertible and pseudoinverse is used, the last term above

becomes PxzP
+
zzPzz where P+

zzPzz is an orthogonal projection to the range
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of Pzz. As R(Pzz)
⊥ ⊂ N (Pxz), the above covariance is still zero.

The minimization property in (iv) can be checked by directly solving the

minimization problem which leads to expression (3.2), as in the proof of [9,

Lemma 5.12].

It is noteworthy that by (3.2), Cov [E(x|z) ,E(x|z)] = PxzP
−1
zz Pzx so that

from (3.3) we see that

Cov [x− E(x|z) , x− E(x|z)] = Cov [x, x]− Cov [E(x|z) ,E(x|z)] .

By computing the trace of both sides, we get the sort of Pythagorean identity

E

(
||x−mx||2X

)
= E

(
||E(x|z)−mx||2X

)
+ E

(
||x− E(x|z)||2X

)
.

Also it holds that Cov [x, x] ≥ Cov [E(x|z) ,E(x|z)] meaning that Cov [x, x] −
Cov [E(x|z) ,E(x|z)] is positive (semi)definite. These simple facts are used in

publication III.

From linearity of the dynamics equations (3.1) and parts (iii) and (v) of

Proposition 3.1.1, it follows that the state xk is an X -valued Gaussian ran-

dom variable for all k ≥ 0. The mean is E(xk) = Akm and covariance

Cov [xk, xk] =: Sk is given by the recursive equation

Sk = ASk−1A∗ +BQB∗, S0 = P0. (3.4)

Further, [x0, ..., xk, y1, ..., yk] is a Gaussian random variable in X k+1 × Yk for

all k ≥ 0. Let us conclude the section with the following result.

Theorem 3.1.1. Let xk be given by (3.1) with P0 = 0 and assume that the

system is input stable. Then the covariance Sk = Cov [xk, xk] given by (3.4)

converges strongly to S ∈ L(X ) which is the solution of the Lyapunov equation

S = ASA∗ +BQB∗. If, in addition, the system is asymptotically stable, then

Sk converges strongly to S starting from any symmetric S0 = P0.

Note that the limit S is not a trace class operator in general. If the system

is even exponentially stable then the limit is a trace class operator and the

convergence is in operator norm.

Proof. Recall that input stability is equivalent to Ŝ = AŜA∗ +BB∗ having a

nonnegative solution. Consider first the case S0 = 0. Clearly the solution to

the covariance equation (3.4) is Sk =
∑k−1

j=0 A
jBQB∗(A∗)j , from which it is

easy to see that Sk+1 ≥ Sk. Assuming Sk−1 ≤ ||Q||L(U) Ŝ for some k, then

Sk = ASk−1A∗ +BQB∗ ≤ ||Q||L(U)AŜA∗ + ||Q||L(U)BB∗ = ||Q||L(U) Ŝ.
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So Sk is increasing and uniformly bounded implying strong convergence to

some operator by [43, p. 249]. Letting k →∞ in (3.4) yields that the limit is S.

Then assume asymptotical stability and consider S0 	= 0. Then Sk =

AkS0(A
∗)k+

∑k−1
j=0 A

jBQB∗(A∗)j . Asymptotical stability means that Ak → 0

strongly and so also AkS0(A
∗)k → 0 strongly.

3.2 Kalman filter derivation

Assume now that dim(Y) < ∞. Define Yk := [y1, ..., yk]
T and consider

E(xk|Yk). Also [xk, Yk] is a Gaussian random variable in X × Yk and so the

conditional expectation is given by (3.2):

x̂k := E(xk|Yk) = E(xk) + Cov [xk, Yk] Cov [Yk, Yk]
−1 (Yk − E(Yk)). (3.5)

Note that Cov [Yk, Yk] is invertible because it is the sum of a positive definite

block diagonal matrix (with R:s on the diagonal), and a positive semidefinite

matrix.

Now decompose Yk =
[
Yk−1
yk

]
in (3.5), and write the covariances in corre-

sponding block form. Firstly,

Cov [xk, Yk] = Cov
[
Axk−1 +Buk,

[
Yk−1
yk

]]
= ACov

[
xk−1,

[
Yk−1

0

]]
+ACov

[
xk−1,

[
0

CAxk−1

]]
+BCov

[
uk,

[
0

CBuk

]] (3.6)

where in the second equality we have used yk = CAxk−1 + CBuk + wk and

the independence of uk, wk, and xk−1. Then recall the block matrix inversion

formula for symmetric matrices

⎡⎣ F G

GT H

⎤⎦−1=
⎡⎣F−1+ F−1G(H−GTF−1G)−1GTF−1 −F−1G(H−GTF−1G)−1

−(H −GTF−1G)−1GTF−1 (H −GTF−1G)−1

⎤⎦
and apply that to

Cov [Yk, Yk] =

⎡⎣Cov [Yk−1, Yk−1] Cov [Yk−1, yk]

Cov [yk, Yk−1] Cov [yk, yk]

⎤⎦ .

Then we collect terms of (3.5). First, from (3.6) the term multiplying the

first row of Cov [Yk, Yk]
−1 is ACov [xk−1, Yk−1]. By picking only the term

F−1 = Cov [Yk−1, Yk−1]−1 from the upper left corner of the inverse formula,
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and E(xk) = AE(xk−1) +BE(uk) = AE(xk−1) from (3.5), we get

E(xk) +ACov [xk−1, Yk−1] Cov [Yk−1, Yk−1]−1 (Yk−1 − E(Yk−1)) = Ax̂k−1.

Then observe that the remaining terms in the inverse formula can be factorized

so that (3.5) becomes

x̂k −Ax̂k−1

= Cov [xk, Yk]
[−F−1G

I

]
(H −GTF−1G)−1

[−GTF−1 I
][ Yk−1−E(Yk−1)

yk−E(yk)
]
. (3.7)

Now −GTF−1 = −Cov [yk, Yk−1] Cov [Yk−1, Yk−1]−1 so the last product is

[−GTF−1 I
] [ Yk−1−E(Yk−1)

yk−E(yk)
]

= −Cov [yk, Yk−1] Cov [Yk−1, Yk−1]−1 (Yk−1 − E(Yk−1)) + yk − E(yk)

= yk − E(yk|Yk−1)

where the second equality holds by (3.2). Now it holds that E(yk|Yk−1) =

E(CAxk−1 + CBuk + wk|Yk−1) = CAx̂k−1 because uk and wk are independent

of Yk−1, and E(uk) = E(wk) = 0. Further, the inverse in (3.7) is

H −GTF−1G

= Cov [yk, yk]− Cov [yk, Yk−1] Cov [Yk−1, Yk−1]−1Cov [Yk−1, yk]

= Cov [yk − E(yk|Yk−1) , yk − E(yk|Yk−1)]
= Cov [CAxk−1 + CBuk + wk − CAx̂k−1, CAxk−1 + CBuk + wk − CAx̂k−1]

= CACov [xk−1 − x̂k−1, xk−1 − x̂k−1]A∗C∗ + CBQB∗C∗ +R

where the second equality holds by (3.3) and the last because uk and wk are

independent of xk−1 and x̂k−1. Finally, using (3.6) for Cov [xk, Yk−1], and

−F−1G = −Cov [Yk−1, Yk−1]−1Cov [Yk−1, yk], the first product in (3.7) is

Cov [xk, Yk]
[−F−1G

I

]
= −ACov [xk−1, Yk−1] Cov [Yk−1, Yk−1]−1Cov [Yk−1, yk]

+ACov [xk−1, CAxk−1] +BCov [uk, CBuk]

= A
(
Cov [xk−1, xk−1]− Cov [xk−1, Yk−1] Cov [Yk−1, Yk−1]−1Cov [Yk−1, xk−1]

)
A∗C∗

+BQB∗C∗

= ACov [xk−1 − x̂k−1, xk−1 − x̂k−1]A∗C∗ +BQB∗C∗.

In the second equality, Cov [Yk−1, yk] was treated as above, and the last equal-
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ity follows from (3.3). Now we have all of the terms in (3.7) for computing

x̂k. Performing the same decomposition and term gathering for the estima-

tion error covariance Pk := Cov [xk − x̂k, xk − x̂k] given by (3.3) leads to the

recursive Kalman filter equations that are typically written in the following

form, known as Riccati difference equations,⎧⎪⎨⎪⎩P̃k = APk−1A∗ +BQB∗,

Pk = P̃k − P̃kC
∗(CP̃kC

∗ +R)−1CP̃k

(3.8)

with P0 being the initial state covariance, and

x̂k = Ax̂k−1 +Kk(yk − CAx̂k−1) (3.9)

where Kk := P̃kC
∗(CP̃kC

∗ +R)−1 is known as the Kalman gain.

3.3 Discussion and auxiliary results

One of the reasons why Kalman filter has been very popular in practical ap-

plications is its computational lightness. The error covariances given by (3.8)

and the Kalman gains Kk do not depend on observations and thus they can

be computed offline beforehand, leaving only (3.9) to be solved online.

It is easy to show that for any quadratically integrable random variable [ xz ] ∈
Hx × Hz, that is, E

(
||x||2Hx

+ ||z||2Hz

)
< ∞, the solution to the minimization

problem

min
K∈L(Hz ,Hx)

E

(
||x−mx −K(z −mz)||2Hx

)
(3.10)

is given by (3.2) and the error covariance by (3.3). Recall that our derivation of

the Kalman filter was based solely on these equations. Thus the Kalman filter

provides the optimal (in terms of error measure (3.10)) linear filter for systems

of the form (3.1), even when the noise processes u and w and initial state x0

are uncorrelated and quadratically integrable, but not necessarily Gaussian.

Of course, better nonlinear filters might exist in this case.

Let us end the chapter by presenting some results on Kalman filter and the

corresponding Riccati difference equations. Some of these results are used in

publication III while others are just “nice-to-know”.

Theorem 3.3.1. Let Pk and P
(j)
k for j = 1, 2 be the solutions of equations

(3.8) with the load term BQB∗ replaced by self-adjoint, positive trace class

operators W and W (j), j = 1, 2, respectively. The following assertions hold.
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(i) If W (2) ≥W (1) and P
(2)
0 ≥ P

(1)
0 then P

(2)
k ≥ P

(1)
k for all k.

(ii) If Pk ≥ Pk−1 for some k then Pk+1 ≥ Pk.

(iii) If 2Pk ≥ Pk−1 + Pk+1 for some k then 2Pk+1 ≥ Pk + Pk+2.

The first assertion follows from [12, Lemma 3.1]. The proof is presented in

the finite dimensional case, but it holds also for infinite dimensional systems

assuming dim(Y) <∞. It is also presented in Lemma 3.2 of III with a simple

proof. The other two assertions are not needed in the thesis, but here they

are given just to illuminate the properties of Riccati difference equations and

the state estimation problem. Part (ii) follows directly from (i). Part (iii) is

proven in [12, Lemma 3.2].

Theorem 3.3.2. Let Pk be the solution of (3.8). The following assertions hold.

(i) If the underlying system is input stable and P0 = 0 then Pk converges

strongly to P as k → ∞ where P is a solution of the discrete algebraic

Riccati equation (DARE)⎧⎪⎨⎪⎩P̃ = APA∗ +BQB∗,

P = P̃ − P̃C∗(CP̃C∗ +R)−1CP̃ .
(3.11)

(ii) If the asymptotic filter is exponentially stable, that is, r(A − KCA) < 1

where K = P̃C∗(CP̃C∗ + R)−1 then Pk converges to P , starting from any

self-adjoint trace class operator P0 ∈ L(X ). Also, P is the unique nonnega-

tive solution of (3.11).

The proofs of (i) and (ii) can be found in [18, Theorem 1] and [18, Theorem 3],

respectively. The first proof is based on showing that Pk is an increasing

sequence (see part (ii) of Theorem 3.3.1). It is also bounded by S which is

the limit of (3.4), see Theorem 3.1.1. The proof of (ii) is rather similar. The

sufficient stability assumption for part (ii) is actually uniform asymptotical

stability at large which is implied by exponential stability. In publication III

the exponential stability of the Kalman filter is needed elsewhere and therefore

it is taken as an assumption here as well.
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4. Summaries of the articles

I: Compositions of passive boundary control systems

Recall the formulation of impedance type boundary control systems in Sec-

tion 2.1.3, and in particular, the energy inequality (2.8). Consider then an

electric circuit. The well-known Kirchhoff laws say that in any vertex of the

circuit, the voltage is the same for all leads connected in the vertex and the

electrical currents must sum up to zero. These coupling conditions are natural

also for the other mentioned example cases.

In publication I, the coupling conditions are formulated in terms of the input

and output operators of the subsystems, whose dynamics are governed by col-

ligations (G(j), L(j),K(j)) on Hilbert spaces (U (j),X (j),Y(j))) where the index

j refers to the subsystem. Assume that the input and output spaces can be

split into two parts, that is, U (j) = U (j)
1 ⊕ U (j)

2 and Y(j) = Y(j)
1 ⊕ Y(j)

2 , each

representing a part of the boundary where the control action takes place —

consider, for example, the two ends of a transmission line. Then, for exam-

ple, the Kirchhoff coupling conditions for three systems (j = 1, 2, 3) coupled

through the first parts of the input and output are⎧⎪⎨⎪⎩G
(1)
1 z1(t) = G

(2)
1 z2(t) = G

(3)
1 z3(t),

K
(1)
1 z1(t) +K

(2)
1 z2(t) +K

(3)
1 z3(t) = 0,

(4.1)

assuming that the corresponding spaces are compatible, that is, U (1)
1 = U (2)

1 =

U (3)
1 and Y(1)

1 = Y(2)
1 = Y(3)

1 . This is a slightly simplified example. In publica-

tion I, the spaces U (j) and Y(j) can be split into more than two parts.

The main result of this article is that if internally well-posed, impedance pas-

sive (or conservative) boundary control systems (see Definitions 2.1.7 and 2.1.9)

are interconnected through Kirchhoff type coupling conditions (4.1), then also
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the resulting composed system (called a transmission graph, see Definitions 3.1

and 3.2 in I) is an internally well-posed, impedance passive (or conservative)

boundary control system.

Compositions of port-Hamiltonian systems (see the end of Section 2.1.2) are

studied in [7] by Cervera et al. and in [26] by Kurula et al. The presented

formalism does not allow connecting finite dimensional subsystems to bound-

ary control systems. To do that, one would need to work with the system

node setting. This would require some further investigation. Such ideas can

be found for example in [57] by Weiss and Zhao.

II: Convergence of discrete time Kalman filter estimate to

continuous time estimate

In publication II we study systems of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dtz(t) = Az(t),

z(0) = x ∼ N(m,P0),

y(t) =
∫ t
0 Cz(s) ds+ w(t)

where w is Brownian motion with incremental covariance R. We define the

discrete and continuous time state estimates as

x̂T,n := E

(
x
∣∣∣ {y ( iTn )}n

i=1

)
and x̂(T ) := E

(
x
∣∣{y(s), s ≤ T

})
respectively. These estimates are given by the Kalman(–Bucy) filter — given

that the continuous time Kalman–Bucy filter equations are solvable. By the

Martingale convergence theorem, when the temporal discretization is refined

then the discrete time estimate converges to the continuous time estimate.

The purpose of publication II is to establish convergence speed estimates for

E

(
||x̂T,n − x̂(T )||2X

)
in various cases under different assumptions. First the

result is established assuming C ∈ L(X ,Y) and either P0 ∈ L(X ,D(A)) or

x ∈ D(A) almost surely. The latter covers the case dim(X ) < ∞. Then the

case C ∈ L(D(A),Y) is treated assuming x ∈ D(A) almost surely and that A

is diagonalizable and its point spectrum satisfies the asymptotic condition (ii)

in Theorem 3.5 and C satisfies the regularity assumption (iii) in Theorem 3.5,

or that the system is scattering passive. Then an estimate is shown when

A generates an analytic semigroup. The proofs are based on applying the

discrete time Kalman filter starting from x̂T,n and taking into account more
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and more measurements from a dense, numerable set in [0, T ].

To the author’s knowledge, such results have not been published before.

The articles [2] by Axelsson and Gustafsson and [55] by Wahlström et al.

study the effect of using different numerical schemes for approximating the

matrix exponential eAΔt on the solution of the Lyapunov equation and the

Kalman filtering problem. Further effort would be required to obtain similar

convergence results when for example the Cayley transformation (introduced

in Section 2.2.1) would be used for obtaining the discretized system.

III: Spatial discretization error in Kalman filtering for discrete-time

infinite dimensional systems

Publication III deals with state estimation problem for infinite dimensional

discrete time systems. A practical implementation of the Kalman filter cannot

be done in infinite dimensions. The system dynamics can be approximated by

projecting equations (3.1) by an orthogonal projection Πs : X → X . The finite

dimensional subspace ΠsX can be for example a finite element space (see the

example in Section 5 of III) or a truncated eigenspace, see [48]. If the Kalman

filter is directly implemented to the discretized system, the result is biased and

hence not optimal. In Section 2 of III, an optimal one-step state estimate is

derived that takes values in the finite dimensional subspace. One-step estimate

means here that the kth state estimate depends only on the previous estimate

and the kth measurement — recall the remarkable property of the Kalman

filter, E(xk|Yk) = E(xk|x̂k−1, yk). In Section 3, a Riccati difference equation is

derived for the estimation error. The main results of the article are presented in

Section 4, namely estimates for the discrepancy between the full state Kalman

filter estimate x̂k and the presented reduced-order estimate x̃k. It is shown that

if supk E
(
||xk||2X1

)
<∞, the system is input stable, and the full state Kalman

filter is exponentially stable, then as ||I −Π∗Π||L(X1,X ) becomes small, then

lim sup
k→∞

E

(
||Qkx̃k − x̂k||2X

)
= O

(
||I −Π∗Π||2L(X1,X )

)
where Qk is a certain post-processing operator that is obtained when com-

puting the Kalman gains for the reduced-order method. The proof is based

on applying perturbation theory for algebraic Riccati equations, developed by

Sun in [50], to the corresponding DAREs.

Another state estimator that takes the discretization error into account is

developed by Pikkarainen in [39] and implemented numerically by Huttunen
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and Pikkarainen in [22]. Their method is based on keeping track of the dis-

cretization error and then ignoring the correlation of the discretization error

for different time steps in order to obtain a one step estimate. The direct

implementation of the finite dimensional Kalman filter to the discretized sys-

tem is studied by Bensoussan in [3, Chapter 9] and by Germani et al. in

[16]. The latter includes a convergence result for the finite dimensional state

estimate and the corresponding error covariance. In a very recent manuscript

[13], Dihlmann and Haasdonk propose a reduced-basis Kalman filter for PDEs

with possibly non-constant (in time) parameters.

Our approach is closely related to the reduced-order filtering methods. Let

us mention articles [4] and [5] by Bernstein and Hyland and [47] by Simon

because they had some influence on the results of this article — even though

their results are not explicitly used.

IV: Acoustic wave guides as infinite-dimensional dynamical systems

This publication is a part of a trilogy containing also articles [29] and [30]

by Lukkari and Malinen. The author’s contribution is restricted to Section 3,

titled “Conservative majorants”, and so only that part is discussed here.

A passive boundary control system described by a colligation (G,L,K) on

U ×X ×Y with domain Z (see Definitions 2.1.8 and 2.1.9) can often be “split”

into a sum of a conservative part and a dissipative perturbation (see (12) in

the example in Section 5 of I). Alternatively, at some part of the boundary of

an otherwise energy preserving system, there is a resistive boundary condition

(see the second and third boundary conditions in (14) in I). These cases can

be formulated as follows:

Definition. Let
([

G1
G2

]
, L,

[
K1
K2

])
on Hilbert spaces (U1×U2,X ,Y1×Y2) with

domain Z be a scattering passive (or conservative) boundary node. It is called

a passive (or conservative) majorant of colligations of the form (G1, L+H,K1)

on Hilbert spaces (U1,X ,Y1) with domain Z∩N (G2) where Z∩N (G2) ⊂ D(H)

and 〈z,Hz〉X ≤ 0 for all z ∈ Z ∩ N (G2) and H is dominated by L, meaning

that it satisfies one (or both) of the conditions (i) or (ii) of Theorem 3.2 in IV.

The results of Section 3 of IV then say that if a colligation has a passive

majorant, then also the system itself is a scattering passive boundary node.

For example the internal well-posedness in the example in Section 5 of I is

shown using such argument in the simple special case H ∈ L(X ). For similar

ideas in the port-Hamiltonian context, see [54, Chapter 6] by Villegas.

40



Bibliography

[1] W. Arendt, C.J.K. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace

Transforms and Cauchy Problems. Birkhäuser, 2001.
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Abstract. We show under mild assumptions that a composition of inter-
nally well-posed, impedance passive (or conservative) boundary control systems
through Kirchhoff type connections is also an internally well-posed, impedan-
ce passive (resp., conservative) boundary control system. The proof is based
on results of Malinen and Staffans [21]. We also present an example of such
composition involving Webster’s equation on a Y-shaped graph.

1. Introduction. We treat the solvability (forward in time) of dynamical bound-
ary control systems that are composed by interconnecting a finite number of more
simple boundary control subsystems that are already known to be solvable forward
in time. The interconnections are given in terms of algebraic equations involving the
boundary control/observation operators of the subsystems. The aggregate formed
by the subsystems and their interconnections is called a transmission graph (see
Definition 3.1), and it can be seen as a generalisation of mathematical transmission
lines and networks. We assume throughout this work that all the subsystems are
passive or conservative as described in, e.g., Gorbachuk and Gorbachuk [9], Livšic
[17], Malinen and Staffans [20, 21], Salamon [24, 25], and Staffans [26], and they
are represented by equations of the form (5) below involving strong boundary nodes.
Moreover, the interconnections respect passivity in the sense that they do not create
energy. In Theorem 3.3 — the main result of this paper — we give conditions for
checking the solvability (i.e., internal well-posedness) and passivity of the transmis-
sion graph in terms of simple conditions on the subsystems and interconnections.

To illuminate the purpose of this paper, let us consider the following example
from acoustic wave propagation. Given the interconnection graph in Fig. 1, the
longitudinal wave propagation on its edges (i.e., wave guides) is governed by

∂2ψ(j)

∂t2
(x, t) = c2

∂2ψ(j)

∂x2
(x, t), x ∈ [0, lj ], and t ∈ R

+. (1)

Here the index j = A, ...,D refers to the index of the edge, and the arrows in
Fig. 1 show the positive direction of the parametrisation x ∈ [0, lj ]. To the vertices
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Key words and phrases. Boundary control, passive system, distributed parameter system, well-

posedness, composition, Cauchy problem.
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The results of this paper were presented in IFAC World Congress 2011 ([1]).
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Figure 1. The example graph

ABD and BCD we impose Kirchhoff law type coupling (boundary) conditions (take
vertex ABD for example):⎧⎨⎩

∂ψ(A)

∂t (lA, t) =
∂ψ(B)

∂t (0, t) = ∂ψ(D)

∂t (lD, t),

AA
∂ψ(A)

∂x (lA, t)−AB
∂ψ(B)

∂x (0, t) +AD
∂ψ(D)

∂x (lD, t) = 0.
(2)

We remark that in acoustics applications the state ψ(j) is chosen to be a velocity

potential; then p(j) = ρ∂ψ
(j)

∂t gives the perturbation pressure and v(j) = −∂ψ(j)

∂x
gives the perturbation velocity for each edge. Thus, the first equation in (2) says
that the pressure is continuous, and the second equation is a flux conservation law
(the weights Aj can be understood as the cross-sectional areas of the wave guides).

We want to control the pressure at the vertex AC and observe the perturbation
flux to the wave guides A and C. Defining the input and output{

u(t) := ∂ψ(A)

∂t (0, t) = ∂ψ(C)

∂t (0, t),

y(t) := −AA ∂ψ
(A)

∂x (0, t)−AC
∂ψ(C)

∂x (0, t),
(3)

respectively, then equations (1) for j = A, ...,D and (2) define a dynamical system
whose solvability and energy conservation we wish to verify using Theorem 3.3.

We must consider first the solvability of the subsystems, that is, equations (1)
on the edges with boundary conditions[

∂ψ(j)

∂t (0, t)
∂ψ(j)

∂t (lj , t)

]
=

[
u
(j)
1 (t)

u
(j)
2 (t)

]
=: u(j)(t). (4)

After reducing (1) to a first order equation of form ż = Lz with z =
[
ψ(j)

p(j)

]
, defining

operator G by (4), that is, by Gz(t) = u(j)(t), and K in a similar manner, we
obtain an internally well-posed boundary node Ξ(j) = (G,L,K) that is impedance
conservative, see Definitions 2.2 and 2.3. As explained after Definition 2.2, the
initial value problem

u(t) = Gz(t),
ż(t) = Lz(t),
y(t) = Kz(t), t ∈ R

+,
z(0) = z0

(5)

has a solution such that ψ(j) in equation (1) satisfies ψ(j) ∈ C1(R+;L2(0, lj)) ∩
C(R+;H1[0, lj ]) for all inputs u(j) ∈ C2(R+;C2) and for all initial states z0 that
satisfy the boundary condition Gz0 = u(0). For technical details, see the (more
general) example of Webster’s equation presented in Section 5.

Now we have boundary nodes Ξ(j), j = A, ...,D and coupling conditions of the
form (2) for all vertices except the one that defines the external input and output
through (3). They form a transmission graph as defined in Definition 3.1. Since
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the components Ξ(j) are solvable and conservative, then by Theorem 3.3, also the
resulting composed system is solvable forward in time and conservative in a similar
way as any of its components.

Let us review the most relevant literature on compositions of (boundary control)
systems. The feedback theory for (regular) well-posed linear systems is treated by
Staffans in [26, Chapter 7] and by Weiss in [28] whose concept of admissibility of the
feedback loops is related to the (internal) well-posedness of the composed system,
but the theory can be used only when well-posedness of the components is verified
by other means.

Transport equation on graphs is studied by Engel et al. in [7] by using semigroup
techniques. For a study on the non-linear Saint-Venant equations on a star-shaped
graph, see Gugat et al. [6]. A control algorithm for a string network is developed
by Hundhammer and Leugering in [12] using a domain decomposition method.
Further practical examples of compositions of PDEs with 1D spatial domains include
semiconductor strips and lattice structures constructed of Timoshenko beams. Such
systems have also been studied from the spectral point of view: asymptotic spectral
properties of the Laplacian are studied by Kuchment and Zeng in [13] and by
Rubinstein and Schatzman in [23] when its “graph-like” 3D spatial domain collapses
to a graph with 1D edges. See also Latushkin and Pivovarchik [16] for a study on
the spectral properties of the Sturm-Liouville equation on a Y-shaped graph.

Compositions of PDEs on 1D spatial domains are treated by Villegas in [27] and
by Zwart et al. in [30] in terms of port-Hamiltonian framework. Compositions
of more general systems are studied in, e.g., Cervera et al. in [3] and Kurula et
al. in [15] who treat systems that give raise to Dirac structures on their state
spaces (see also Derkach et al. [5]). These contain impedance conservative, strong
boundary control systems (as characterised in Definitions 2.2 and 2.3) as a special
case. However, our approach is based on results of Malinen and Staffans [20, 21]
that are reviewed in Section 2, and we are able to treat couplings of both passive
and conservative systems at once.

In Section 5 we present a concrete example of a transmission graph, namely the
human vocal tract with nasal cavity, modelled by Webster’s equation on a Y-shaped
graph. For more concrete examples, we refer to Malinen [19].

2. Background. In this work we treat linear boundary control systems described
by operator differential equations of the form (5) involving linear mappings G, L,
and K:

Definition 2.1. Let Ξ := (G,L,K) be a triple of linear mappings.

(i) Ξ is a colligation on the Hilbert spaces (U ,X ,Y) if G, L, and K have the
same domain Z = dom(Ξ) ⊂ X and values in U , X , and Y, respectively;

(ii) A colligation Ξ is strong if
[
G
L
K

]
is closed as an operator X →

[ U
X
Y

]
with

domain Z, and L is closed with dom(L) = Z.
We call L the interior operator, G the input (boundary) operator, and K the output
(boundary) operator. The space Z we call the solution space, X the state space, and
U and Y the input and output spaces, respectively. In Z we use the graph norm
‖z‖2Z = ‖z‖2X + ‖Gz‖2U + ‖Lz‖2X + ‖Kz‖2Y .

In this paper we use the notations
[ ···

]
and

⊕
to represent orthogonal direct sum

of (sub)spaces. See also Remark 3 for a discussion on the terms input and output.



4 ATTE AALTO AND JARMO MALINEN

The definition of strongness coincides with [21, Definition 4.4]. By [21, Lemma 4.5],
Ξ is strong if and only if L is closed with dom(Ξ) and G and K are bounded with
respect to the graph norm of L on dom(Ξ). We shall later make use of this fact.

Many dynamical systems defined by boundary controlled partial differential equa-
tions naturally adopt the form (5) associated with some colligation (G,L,K) on
properly chosen spaces (U ,X ,Y), see the example in Section 5. Equations (5) are
solvable forward in time (at least) if Ξ satisfies somewhat stronger assumptions:

Definition 2.2. A strong colligation Ξ = (G,L,K) is a boundary node on the
Hilbert spaces (U ,X ,Y) if the following conditions are satisfied:

(i) G is surjective and N (G) is dense in X ;
(ii) The operator L|N (G) (interpreted as an operator in X with domain N (G))

has a nonempty resolvent set.

This boundary node is internally well-posed (in the forward time direction) if, in
addition,

(iii) L|N (G) generates a C0 semigroup.

This definition coincides with [20, Definition 1.1] for strong colligations. There are,
in fact, well-posed boundary nodes that are not strong (see [21, Proposition 6.3])
but we do not consider such nodes in this paper1. We remark that also [8], [9], and
[15] treat strong colligations (with different names), see [21, Theorem 5.2] and [15,
Remark 4.4].

Note that “boundary node” does not refer to the vertices of the underlying graph
structure. In fact, boundary nodes are related to the edges of the graph. Therefore,
we always talk about vertices when referring to the graph structure.

If Ξ = (G,L,K) is an internally well-posed boundary node, then (5) has a unique
solution for sufficiently smooth input functions u and initial states z0 compatible
with u(0). More precisely, as shown in [20, Lemma 2.6], for all z0 ∈ Z and u ∈
C2(R+;U) with Gz0 = u(0) the first, second, and fourth of the equations in (5) have
a unique solution z ∈ C1(R+;X )∩C(R+;Z), and hence we can define y ∈ C(R+;Y)
by the third equation in (5). In the rest of this article, when we say “a smooth
solution of (5) on R

+” we mean a solution with the above properties.
In a practical application, checking the solvability of (5), that is, verifying the

conditions of Definition 2.2 may be difficult. However, in many cases this is not nec-
essary because the system satisfies energy (in)equalities that can be verified using
the Green–Lagrange inequality without an a priori knowledge of the well-posedness.
Such energy laws make it easier to check the solvability, see Proposition 1 below.
First we shall define impedance passivity/conservativity. To keep the notation sim-
ple, we assume that U = Y even though it would be enough to assume that U and
Y are a dual pair of Hilbert spaces with duality pairing 〈·, ·〉(Y,U); see [21, Definition

3.6] and the discussion preceding it.

Definition 2.3. Let Ξ = (G,L,K) be a colligation on Hilbert spaces (U ,X ,Y).
(i) Ξ is impedance passive if the following conditions hold:

(a)

[
βG+K
α− L

]
is surjective for some α, β ∈ C

+;

(b) For all z ∈ dom(Ξ) we have the Green–Lagrange inequality

Re
〈
z, Lz

〉
X ≤

〈
Kz,Gz

〉
U . (6)

1To avoid confusion, we shall use the term strong boundary node below.



COMPOSITIONS OF PASSIVE BCS 5

(ii) Impedance passive Ξ is impedance conservative if (6) holds as an equality, and
(a) holds also for some α, β ∈ C

−.

Impedance passivity/conservativity is defined in [21, Definition 3.2] using the exter-
nal Cayley transform of scattering passivity/conservativity (see also the discussion
there). These definitions are equivalent by [21, Theorem 3.4]. We further remark
that [21, Theorem 3.4] also states that for an impedance passive Ξ, condition (a)
holds for all α, β ∈ C

+, and for an impedance conservative Ξ, condition (a) holds
also for all α, β ∈ C

−.
Suppose now that Ξ is an internally well-posed, impedance passive boundary

node and z a smooth solution of (5). Then (6) means plainly the energy inequality

d

dt

(
1

2
‖z(t)‖2X

)
≤ 〈

y(t), u(t)
〉
U for all t ∈ R

+

where the right hand side stands for the instantaneous power entering the system,
and the norm of X measures the energy stored in the state.

The following proposition utilising the energy balance laws is needed for checking
internal well-posedness and impedance passivity/conservativity.

Proposition 1. Let Ξ = (G,L,K) be a strong colligation on Hilbert spaces (U ,X ,U).
(i) Suppose that (6) holds for all z ∈ dom(Ξ), and that

[
G

α−L
]
is surjective for

some α ∈ C with Re(α) ≥ 0. Then Ξ is an internally well-posed, impedance
passive boundary node. If, in addition, (6) holds as an equality and

[
G

α−L
]
is

surjective also for some Re(α) ≤ 0, then the internally well-posed boundary
node Ξ is impedance conservative.

(ii) If Ξ is impedance passive, then it is an internally well-posed boundary node if
and only if its input operator G is surjective.

For a proof, see [21, Theorem 4.3 and Remark 4.6] for part (i) and [21, Theorem
4.7] for part (ii).

Internally well-posed boundary nodes can always be written in terms of more
general and complicated system nodes (see [20], [22], and [26]) but they are excluded
from state linear systems studied in [4]. A functional analytic setting of boundary
control systems, that is independent of the system node setting, was formulated by
Fattorini in [8] and significant progress was made by Salamon in [24, 25]. See also
Greiner [10] for a similar presentation.

3. Transmission graphs as colligations. Assume that we have colligations
Ξ(j) =

(
G(j), L(j),K(j)

)
on Hilbert spaces

(U (j),X (j),Y(j)
)
with solution spaces

Z(j), j = 1, ...,m, where

G(j) =

⎡⎢⎢⎣
G

(j)
1
...

G
(j)
kj

⎤⎥⎥⎦ : dom(Ξ(j))→ U (j) =

⎡⎢⎢⎣
U (j)
1
...

U (j)
kj

⎤⎥⎥⎦ and

K(j) =

⎡⎢⎢⎣
K

(j)
1
...

K
(j)
kj

⎤⎥⎥⎦ : dom(Ξ(j))→ Y(j) =

⎡⎢⎢⎣
Y(j)
1
...

Y(j)
kj

⎤⎥⎥⎦ .

(7)
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That is, the Hilbert spaces U (j) and Y(j) are represented by an orthogonal direct
sum of kj subspaces each, and the corresponding input and output operators are
split accordingly.

In order to define the topological structure of the transmission graph, we define
control vertices I1, ..., IN (where N 	= 0) and closed vertices J 1, ...,JM as pairwise
disjoint sets of index pairs (j, i) where j refers to the subsystem Ξ(j) and i ∈
{1, ..., kj} refers to the ith component in the splitting (7). We assume that every pair
(j, i) for j = 1, ...,m; i = 1, ..., kj belongs to some vertex. This is not a restriction
since uncoupled input/output pairs can be included as singleton vertices, as in our
example in Section 5.

Each vertex defines a coupling between the subsystems in such a way that all

inputs u
(j)
i whose index pairs (j, i) belong to the same vertex are equal, and the

corresponding outputs are summed up. In addition, for closed vertices we require
that the outputs sum up to zero. For such coupling to be possible, it is required
that the compatibility conditions

U (j)
i = U (p)

q and Y(j)
i = Y(p)

q (8)

hold for all (j, i), (p, q) ∈ Ik, k = 1, ..., N and for all (j, i), (p, q) ∈ J l, l = 1, ...,M .
The couplings are written in terms of input and output operators as follows:

(i) for all control and closed vertices, the continuity equations

G
(j)
i z(j) = G(p)

q z(p) for z(j) ∈ Z(j) and z(p) ∈ Z(p) (9)

hold, i.e., (9) holds for all (j, i), (p, q) ∈ Ik, k = 1, ..., N and for all (j, i), (p, q) ∈
J l, l = 1, ...,M ; and

(ii) for closed vertices, also the balance equations∑
(j,i)∈J l

K
(j)
i z(j) = 0 for z(j) ∈ Z(j) and l = 1, ...,M (10)

hold.

Control vertices are exactly those couplings where external signals are applied. If
the transfer function (see [20, Section 2]) of each Ξ(j) represents electrical admit-
tance, then the physical dimensions of U (j) and Y(j) are the voltage and current,
respectively. Equations (9) and (10) are the classical Kirchhoff laws, namely, the
continuity of voltage and the conservation of charge.

Definition 3.1. Assume that Ξ(j) are colligations with splittings as described above
in (7). Suppose that sets I1, ..., IN and J 1, ...,JM are defined consistently with
this splitting so that the compatibility conditions (8) hold. The ordered triple

Γ :=

({
Ξ(j)

}m
j=1

,
{Ik}N

k=1
,
{J l

}M
l=1

)
is called a transmission graph.

A transmission graph is a notion that contains the building blocks and the “as-
sembly instructions” of the composition. Together with coupling conditions (9) and
(10), it gives rise to a dynamical system as follows:

Definition 3.2. Let Γ be a transmission graph as in Definition 3.1. Using the
same notation, we define the colligation of the transmission graph as the triple
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ΞΓ = (G,L,K) on the Hilbert spaces (U ,X ,Y) where2

X :=
m⊕
j=1

X (j), U :=
⊕

(j,i)∈Ik

k=1,...,M

U (j)
i , Y :=

⊕
(j,i)∈Ik

k=1,...,M

Y(j)
i ,

dom(ΞΓ) :=

⎧⎨⎩
m⊕
j=1

Z(j)

∣∣∣∣ (9) and (10) hold

⎫⎬⎭ ,

G := [Gk,j ] k=1,...,N
j=1,...,m

, L :=

⎡⎣ L(1)

. . .
L(m)

⎤⎦ , and K := [Kk,j ] k=1,...,N
j=1,...,m

where

Gk,j :=

{
G

(j)
k /|Ik|, if (j, k) ∈ Ik,

0, otherwise,
and Kk,j :=

{
K

(j)
k , if (j, k) ∈ Ik,

0, otherwise.

In order to make the preceding definitions more intuitive, let us return to the
example on the wave equation on the graph of Fig. 1, presented in the introduction.
We have four boundary nodes Ξ(j), j = A, ...,D whose input and output spaces
are split into two parts, see equation (4). In the graph, there is one control vertex
I1 = {(A, 1), (C, 1)} and two closed vertices J 1 = {(A, 2), (B, 1), (D, 2)} and J 2 =
{(B, 2), (C, 2), (D, 1)}.

The dynamical system given by (1), (2), and (3) corresponds to the colligation

of the transmission graph Γ :=
({

Ξ(j)
}D
j=A

,
{I1} ,

{J 1,J 2
})

. More precisely,

equations in (2) are equivalent with (9) and (10) and the input and output operators
given in Definition 3.2 yield the input/output of equation (3).

The main result of this paper is the following:

Theorem 3.3. Assume that the transmission graph Γ is composed of internally
well-posed, impedance passive (or conservative), strong boundary nodes
Ξ(j) =

(
G(j), L(j),K(j)

)
with the following property:

all of the operators
[
G(j)

K(j)

]
are surjective. (11)

Then the colligation of Γ is an impedance passive (respectively, conservative), in-
ternally well-posed, strong boundary node.

This is proved in three steps (Lemmas 4.1, 4.2, and 4.3) presented in the following
section. The assumption (11) can be relaxed (see Remark 1) but this condition
appears to hold in many applications (as in our example in Section 5).

4. Proof of Theorem 3.3. Suppose we are given a transmission graph Γ. We
reconstruct this graph by a finite number of three different kinds of steps, starting
from its components Ξ(j). In step 1, we form a partial parallel connection between
two compatible colligations to obtain a new colligation, see Fig. 2a. We remark that
such parallel connections are treated in [26, Examples 2.3.13 and 5.1.17] for system
nodes. In step 2, we form loops by joining two signals of a single colligation to obtain
a new colligation, see Fig. 2b. Both the control vertices and the closed vertices are
treated similarly at this stage: all the vertices are left “open” so that (9) is satisfied
but (10) is not. After constructing the full coupling graph structure by taking a

2In sums of U and Y, pick one pair (j, i) ∈ Ik for each k.
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Figure 2. (a) The partial parallel coupling; (b) The loop coupling

finite number of steps 1 and 2 in some order, the final step 3 is taken to close those
vertices that are not used for control/observation; then condition (10) is satisfied
as well. The transmission graph Γ and its colligation have now been reconstructed,
and the remaining (open) vertices are exactly the control vertices of Γ.

By this procedure, it is possible to synthesise any transmission graph. In Lemmas
4.1, 4.2, and 4.3, we show that if we start from internally well-posed, impedance pas-
sive/conservative strong boundary nodes, then the resulting colligations after steps
1, 2, and 3 (respectively) are internally well-posed, impedance passive/conservative,
strong boundary nodes as well. This is required for iterated application of these
steps in order to prove Theorem 3.3. The reconstruction procedure is demonstrated
in Section 4.4 by using the graph of Fig. 1.

4.1. Step 1: Partial parallel coupling. Assume that we have two colligations

Ξ(A) =

([
G

(A)
b

G(A)
c

]
, L(A),

[
K

(A)
b

K(A)
c

])
and Ξ(B) =

([
G

(B)
b

G(B)
c

]
, L(B),

[
K

(B)
b

K(B)
c

])
on Hilbert

spaces
([

U(A)
b

Uc

]
,X (A),

[
Y(A)

b

Yc

])
and

([
U(B)

b

Uc

]
,X (B),

[
Y(B)

b

Yc

])
with solution spaces

Z(A) and Z(B), respectively.
Now define the composed colligation Ξ(AB) :=

(
G(AB), L(AB),K(AB)

)
on the

Hilbert spaces

X (AB) :=

[X (A)

X (B)

]
, U (AB) :=

⎡⎢⎣U (A)
b

Uc
U (B)
b

⎤⎥⎦ , and Y(AB) :=

⎡⎢⎣Y(A)
b

Yc
Y(B)
b

⎤⎥⎦
by L(AB) :=

[
L(A) 0
0 L(B)

]
,

G(AB) :=

⎡⎢⎣ G
(A)
b 0

G
(A)
c 0

0 G
(B)
b

⎤⎥⎦ , and K(AB) :=

⎡⎢⎣ K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

⎤⎥⎦ .

The domain of the colligation is

dom(Ξ(AB)) :=

{[
z(A)

z(B)

]
∈

[
dom(Ξ(A))
dom(Ξ(B))

] ∣∣∣∣ G(A)
c z(A) = G(B)

c z(B)

}
.

Such partial parallel coupling is illustrated in Fig. 2a. We now show that such
coupling of two boundary nodes is also a boundary node and the coupling preserves
internal well-posedness and passivity/conservativity.
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Lemma 4.1. Let Ξ(A), Ξ(B), and Ξ(AB) be as defined above. If the colligations Ξ(A)

and Ξ(B) are internally well-posed, impedance passive (conservative), strong bound-

ary nodes such that both
[
G(A)

K(A)

]
and

[
G(B)

K(B)

]
are surjective, then the composed col-

ligation Ξ(AB) is an internally well-posed, impedance passive (resp., conservative),

strong boundary node with the property that
[
G(AB)

K(AB)

]
is surjective.

Proof. We start by showing that Ξ(AB) is a strong colligation. First, we show that

Ξ(AB) is closed. Assume that dom(Ξ(AB)) �
[
z(A)
n

z(B)
n

]
→

[
z(A)

z(B)

]
and

⎡⎢⎣G
(A)
b 0

G
(A)
c 0

0 G
(B)
b

⎤⎥⎦[
z
(A)
n

z
(B)
n

]
→

⎡⎢⎣u(A)
b

uc

u
(B)
b

⎤⎥⎦ ,

[
L(A) 0
0 L(B)

] [
z
(A)
n

z
(B)
n

]
→

[
x(A)

x(B)

]
,

and

⎡⎢⎣K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

⎤⎥⎦[
z
(A)
n

z
(B)
n

]
→

⎡⎢⎣y(A)
b

yc

y
(B)
b

⎤⎥⎦ .

Since colligations Ξ(A) and Ξ(B) are strong, the operators L(A) and L(B) are

closed,
[
z(A)

z(B)

]
∈

[
dom(Ξ(A))

dom(Ξ(B))

]
, and also L(A)z(A) = x(A) and L(B)z(B) = x(B). To

show that
[
z(A)

z(B)

]
∈ dom(Ξ(AB)), we need to use the strongness of Ξ(A) and Ξ(B)

which means that G
(A)
c and G

(B)
c are continuous with respect to the graph norms

of L(A) and L(B), respectively (see the comment after Definition 2.1). Hence

‖G(A)
c z(A) −G

(B)
c z(B)‖Uc

≤ ‖G(A)
c (z(A) − z

(A)
n )‖Uc

+ ‖G(B)
c (z(B) − z

(B)
n )‖Uc

≤MA

(
‖z(A) − z

(A)
n ‖X (A) + ‖L(A)(z(A) − z

(A)
n )‖X (A)

)
+

+MB

(
‖z(B) − z

(B)
n ‖X (B) + ‖L(B)(z(B) − z

(B)
n )‖X (B)

)
→ 0 when n→∞

where we have used the fact G
(A)
c z

(A)
n = G

(B)
c z

(B)
n . This implies G

(A)
c z(A) =

G
(B)
c z(B) meaning that

[
z(A)

z(B)

]
∈ dom(Ξ(AB)). By a similar computation we can

verify ⎡⎢⎣G
(A)
b 0

G
(A)
c 0

0 G
(B)
b

⎤⎥⎦[
z(A)

z(B)

]
=

⎡⎢⎣u(A)
b

uc

u
(B)
b

⎤⎥⎦ and

⎡⎢⎣K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

⎤⎥⎦[
z(A)

z(B)

]
=

⎡⎢⎣y(A)
b

yc

y
(B)
b

⎤⎥⎦ .

Closedness of L(AB) with domain dom(L(AB)) = dom(Ξ(AB)) is shown similarly.
Thus, Ξ(AB) is strong colligation. Note that in the preceding computation, we did

not need G
(A)
c z

(A)
n → uc to show

[
z(A)

z(B)

]
∈ dom(Ξ(AB)), i.e., G

(A)
c z(A) = G

(B)
c z(B).

We proceed to show that Ξ(AB) is an internally well-posed, impedance passive

boundary node with the help of Proposition 1. Surjectivity of
[

G(AB)

α−L(AB)

]
(with

domain dom(Ξ(AB))) for some α ∈ C with Reα ≥ 0 follows from the fact that[
G(A)

α−L(A)

]
and

[
G(B)

α−L(B)

]
are surjective for the same α. All that is left is to show
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that the Green–Lagrange identity (6) holds:

Re
〈
z, L(AB)z

〉
X (AB) = Re

(〈
z(A), L(A)z(A)

〉
X (A) +

〈
z(B), L(B)z(B)

〉
X (B)

)
≤ Re

(〈
K

(A)
b z(A), G

(A)
b z(A)

〉
U(A)

b

+
〈
K

(A)
c z(A), G

(A)
c z(A)

〉
Uc
+

+
〈
K

(B)
b z(B), G

(B)
b z(B)

〉
U(B)

b

+
〈
K

(B)
c z(B), G

(B)
c z(B)

〉
Uc

)
= Re

〈
K(AB)z,G(AB)z

〉
U(AB)

where the last equation follows from G
(A)
c z(A) = G

(B)
c z(B) and definitions of G(AB)

and K(AB). Surjectivity of
[
G(AB)

K(AB)

]
follows from surjectivity of

[
G(A)

K(A)

]
and

[
G(B)

K(B)

]
.

The conservativity is verified by repeating the latter part of the proof with −α in
place of α and replacing the inequality in Green–Lagrange identity by equality.

4.2. Step 2: Loop coupling. Now assume that we have a colligation Ξ = (G,L,K)

on the Hilbert spaces

([
U1

Uc

Uc

]
,X ,

[
Y1

Yc

Yc

])
where G =

[
G1

G2

G3

]
and K =

[
K1

K2

K3

]
, i.e., the

input and output operators and spaces can be split into (at least) three parts. We

“glue” two of these parts together to form another colligation Ξ̂ :=
(
Ĝ, L̂, K̂

)
on

the Hilbert spaces
([ U1

Uc

]
,X ,

[ Y1

Yc

])
with dom(Ξ̂) :=

{
z ∈ dom(Ξ)

∣∣ G2z = G3z
}
,

L̂ := L|dom(̂Ξ), Ĝ :=
[
G1

G2

]
, and K̂ :=

[
K1

K2+K3

]
.

The block diagram of such coupling is shown in Fig. 2b. As in step 1, we show
that if the original colligation Ξ is an internally well-posed, impedance passive

(conservative), strong boundary node, then Ξ̂ is one as well.

Lemma 4.2. Let Ξ and Ξ̂ be as defined above. If the colligation Ξ is an inter-
nally well-posed, impedance passive (conservative), strong boundary node such that

[ GK ] is surjective, then also Ξ̂ is an internally well-posed, impedance passive (resp.,

conservative), strong boundary node with the property that
[

̂G
̂K

]
is surjective.

Proof. Strongness of Ξ̂ is shown as before in Lemma 4.1.

Surjectivity of
[

̂G
α−̂L

]
for some α ∈ C with Reα ≥ 0 is easy to see, and also

Green–Lagrange identity holds in dom(Ξ̂):

Re
〈
z, L̂z

〉
̂X ≤ Re

〈
K1z,G1z

〉
U1

+Re
〈
K2z,G2z

〉
Uc

+Re
〈
K3z,G3z

〉
Uc

= Re
〈
K1z,G1z

〉
U1

+Re
〈
(K2 +K3)z,G2z

〉
Uc

= Re
〈
K̂z, Ĝz

〉
̂U

where the second equality follows from G2z = G3z and the last from the definitions

of Ĝ and K̂. Surjectivity of
[

̂G
̂K

]
follows from surjectivity of [ GK ].

If Ξ is conservative, then to show conservativity of Ξ̂, just repeat the proof with
−α in place of α and replace the inequality in the Green–Lagrange identity with
equality.

4.3. Step 3: Closing the vertices. In this step, we single out some vertices
as control/observation vertices and permanently “close” all others with respect to
additional external signals. Note that after steps 1 and 2, under the assumptions of
Lemmas 4.1 and 4.2, the resulting colligation is an internally well-posed boundary
node, such that (9) is satisfied. This closing means that we require also (10) to be
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satisfied, and we now show that this can be done without sacrificing the internal
well-posedness or passivity/conservativity.

So let Ξ = (G,L,K) be a colligation on the Hilbert spaces
([ U1

U2

]
,X ,

[ Y1

Y2

])
with

splittings G =
[
G1

G2

]
and K =

[
K1

K2

]
where G2 and K2 correspond to vertices we

want to close. Define the new colligation by Ξ̂ :=
(
G1, L̂,K1

)
on the Hilbert spaces

(U1,X ,Y1) with dom(Ξ̂) := dom(Ξ) ∩N (K2) and L̂ := L|dom(̂Ξ).

Lemma 4.3. Let Ξ and Ξ̂ be as defined above. If Ξ is an internally well-posed,
impedance passive (conservative), strong boundary node with the property that [ GK ]

is surjective, then also Ξ̂ is an internally well-posed, impedance passive (resp., con-
servative), strong boundary node.

Proof. We carry out a partial flow inversion and interchange the roles of G2 and

K2. More precisely, we shall prove that Ξ̃ :=
(
G̃, L, K̃

)
on Hilbert spaces([ U1

Y2

]
,X ,

[ Y1

U2

])
where G̃ :=

[
G1

K2

]
, K̃ :=

[
K1

G2

]
, and dom(Ξ̃) := dom(Ξ), is an inter-

nally well-posed, impedance passive (conservative), strong boundary node. Colliga-

tion Ξ̂ is then obtained from Ξ̃ by restricting the solution space to N (K2), and it
clearly has all the properties as claimed, see Definition 2.2 and the comment after

Definition 2.1 concerning the strongness of Ξ̂.

It is trivial that Ξ̃ is a strong colligation. One way to see the interchangeability
of G2 and K2 is directly by Definition 2.3 with β = 1:[

G̃+ K̃
α− L

]
=

[ [
G1

K2

]
+

[
K1

G2

]
α− L

]
=

[ [
G1

G2

]
+

[
K1

K2

]
α− L

]
=

[
G+K
α− L

]
.

The surjectivity of this operator follows from impedance passivity of Ξ. Similarly
for the conservative system we also need the operator[

G̃− K̃
α− L

]
=

⎡⎣ I 0 0
0 −I 0
0 0 I

⎤⎦[
G−K
α− L

]
to be surjective which holds by the conservativity of Ξ, see Definition 2.3 with

β = −1. The Green–Lagrange (in)equality trivially holds, and it follows that Ξ̃ is
an impedance passive (conservative), strong colligation.

Finally, by Proposition 1, the surjectivity of
[
G1

K2

]
implies that Ξ̃ is an internally

well-posed boundary node.

Remark 1. Assumption (11) is actually stronger than what was needed in The-
orem 3.3. Indeed, it was only used in the last lines of the proof of Lemma 4.3.
However, the minimal sufficient conditions are impossible to formulate in terms of
the control/observation operators of the subsystems. Instead, we would have to
consider the whole composed system. The requirement is that the control operator
of the composed system has to remain surjective despite the couplings in the closed
vertices.

Remark 2. The partial parallel coupling could be constructed by first forming a
cross product of systems Ξ(A) and Ξ(B), see [26, Example 2.3.10]. It is easy to see
that the cross product preserves all the desired properties of the colligations. The
partial parallel coupling can then be formed by applying a loop coupling to the
product system. This means that Lemma 4.1 actually follows from Lemma 4.2.
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Remark 3. Using the words input and output for Gz and Kz is somewhat mislead-
ing. In fact, since our coupling equations (9) and (10) include conditions involving
both Gz and Kz, we have to assume that also the flow-inverted system is solvable;
that is, solvable if G and K are interchanged. For many systems this is not a serious
restriction and, in fact, the whole concept of abstract boundary spaces (introduced
in [9]) is based on the existence of such interchangeable pair of possible boundary
conditions. See also Derkach et al. [5] for a study of compositions of systems using
such abstract boundary spaces and Kurula [14] for an introduction of state/signal
systems that are based on equal treatment of inputs and outputs.

4.4. Example on constructing the composition. Let us once more return to
the example of the introduction. We reconstruct the interconnection graph in four
phases which are illustrated in Fig. 3. We start with four boundary nodes labelled
with A, B, C, and D. The input and output operators and spaces of each system
are split into two parts, i.e., kj = 2. The vertices are labelled with 1 and 2 and the
arrows in Fig. 3 point from 1 to 2.

• Phase 1. We start with colligations Ξ(j) =

([
G

(j)
1

G
(j)
2

]
, L(j),

[
K

(j)
1

K
(j)
2

])
on the Hilbert

spaces

([
U(j)

1

U(j)
2

]
,X (j),

[
Y(j)

1

Y(j)
2

])
, j = A,B,C,D.

• Phase 2. The system A is connected to B, and C to D, by a partial parallel
coupling so that we obtain two colligations Ξ(AB) and Ξ(CD) with

G(AB) =

⎡⎢⎣ G
(A)
1 0

G
(A)
2 0

0 G
(B)
2

⎤⎥⎦ , K(AB) =

⎡⎢⎣ K
(A)
1 0

K
(A)
2 K

(B)
1

0 K
(B)
2

⎤⎥⎦ ,

and dom(Ξ(AB)) =

{[
z(A)

z(B)

]
∈

[
dom(Ξ(A))

dom(Ξ(B))

] ∣∣∣∣ G(A)
2 z(A) = G

(B)
1 z(B)

}
and similarly G(CD), K(CD), and dom(Ξ(CD)).

Note that these colligations are induced by transmission graphs; for example
the colligation of Γ(AB) :=

({
Ξ(A),Ξ(B)

}
, {{(A, 1)}, {(A, 2), (B, 1)}, {(B, 2)}} , ∅)

is exactly Ξ(AB).
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�
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� � � �

A B

C D
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�

�

�
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Figure 3. Composing a transmission graph
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• Phase 3. Now Ξ(AB) is connected to Ξ(CD) by a partial parallel coupling. The

part of the operator G(AB) which is not involved in the connection is G
(AB)
b =[

G
(A)
1 0

0 G
(B)
2

]
and the part that is, is G

(AB)
c =

[
G

(A)
2 0

]
. Correspondingly

K
(AB)
b =

[
K

(A)
1 0

0 K
(B)
2

]
and K

(AB)
c =

[
K

(A)
2 K

(B)
1

]
. The system Ξ(CD) is

connected by its free vertex {(D, 2)} to the common vertex {(A, 2), (B, 1)} of Ξ(AB)

so the CD-splitting is done differently, namely G
(CD)
b =

[
G

(C)
1 0

0 G
(D)
1

]
, G

(CD)
c =

[
0 G

(D)
2

]
, K

(CD)
b =

[
K

(C)
1 0

K
(C)
2 K

(D)
1

]
, and K

(CD)
c =

[
0 K

(D)
2

]
.

Thus, as described in Section 4.1, we obtain a system with

G =

⎡⎢⎢⎢⎢⎢⎢⎣
G

(A)
1 0 0 0

0 G
(B)
2 0 0

G
(A)
2 0 0 0

0 0 G
(C)
1 0

0 0 0 G
(D)
1

⎤⎥⎥⎥⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎢⎢⎢⎣
K

(A)
1 0 0 0

0 K
(B)
2 0 0

K
(A)
2 K

(B)
1 0 K

(D)
2

0 0 K
(C)
1 0

0 0 K
(C)
2 K

(D)
1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and dom(Ξ) =

{
z(j) ∈ dom(Ξ(j)), j = A,B,C,D

∣∣∣∣
G

(A)
2 z(A) = G

(B)
1 z(B) = G

(D)
2 z(D), G

(C)
2 z(C) = G

(D)
1 z(D)

}
.

Again, the colligation Ξ is induced by a transmission graph

Γ :=
({

Ξ(j)
}D
j=A

, {Il}5l=1, ∅
)
where I1 = {(A, 1)}, I2 = {(A, 2), (B, 1), (D, 2)},

I3 = {(B, 2)}, I4 = {(C, 1)}, and I5 = {(C, 2), (D, 1)}.

• Phase 4. In the last phase, the vertex {(B, 2)} is connected to {(C, 2), (D, 1)},
and {(A, 1)} to {(C, 1)}, by a loop coupling. The parts of input and output that are

not involved in the connection are G1 = [G
(A)
2 0 0 0] and K1 = [K

(A)
2 K

(B)
1 0 K

(D)
2 ].

The operators that are involved are G2 =

[
G

(A)
1 0 0 0

0 G
(B)
2 0 0

]
, K2 =

[
K

(A)
1 0 0 0

0 K
(B)
2 0 0

]
,

G3 =

[
0 0 G

(C)
1 0

0 0 0 G
(D)
1

]
, and K3 =

[
0 0 K

(C)
1 0

0 0 K
(C)
2 K

(D)
1

]
. As described in Section 4.2, the

new input and output operators are G =
[
G1

G2

]
and K =

[
K1

K2+K3

]
. To dom(Ξ) we

impose the additional condition G2z2 = G3z3. In terms of the original blocks, this

means G
(A)
1 z(A) = G

(C)
1 z(C) and G

(B)
2 z(B) = G

(D)
1 z(D).

In block operators G and K, before closing any vertices, each column corresponds
to one system (an edge of the graph) and each row corresponds to a coupling (a
vertex of the graph). Thus, in phase 2, the block operators G(AB), K(AB), G(CD),
and K(CD) have three rows and two columns. In phase 3, G and K have five rows
and four columns. And finally, when connecting vertex {(B, 2)} to {(C, 2), (D, 1)}
and {(A, 1)} to {(C, 1)}, two rows are lost.



14 ATTE AALTO AND JARMO MALINEN

Mouth

Nose

Pharynx
�
�

Vocal folds

Figure 4. The human vocal tract and nasal cavity

5. Webster’s equation with dissipation on a graph. An MR-image of the
human vocal tract is shown in Fig. 4. The vocal tract can be considered as a
Y-shaped graph whose three free vertices are at the vocal folds, mouth, and nose
(in Fig. 4, the nasal cavity is only partially visible). The closed vertex with three
outgoing edges is located in the pharynx. Wave propagation in such domain can be
computed by Webster’s equation up to frequencies of about 4 kHz where the effect
of the transversal resonances becomes significant, see [11, Section 5 and Fig. 1].

The generalised Webster’s equation is derived in [18], and it is given by

ψtt(x, t) +
2πθS(x)c(x)2

A(x)
ψt(x, t)− c(x)2

A(x)

∂

∂x

(
A(x)

∂ψ

∂x
(x, t)

)
= 0. (12)

The solution ψ is Webster’s velocity potential that approximates the wave equation
velocity potential when averaged over a transversal cross-section at distance x ∈ [0, l]
from the tube end. Functions A(·), S(·), and c(·) are the cross-sectional area of the
tube, the surface area factor, and the corrected sound velocity, respectively. The
coefficient θ ≥ 0 regulates the dissipation at the tube walls. The classical Webster’s
equation is obtained by setting θ = 0 and c(·) = c.

As explained above, the model for the vocal tract is divided into three parts. In
each of these parts we have velocity potentials ψ(j) : [0, lj ]× R+ → C, j = A,B,C
that satisfy (12) with respective functions Aj ∈ C1[0, lj ] such that Aj(x) > ε > 0,
Sj ∈ L2(0, lj) such that Sj(x) ≥ 0, and cj such that ∞ > cj(x) > ε > 0 and

c−2
j (x) ∈ L2(0, lj). The potentials are connected through Kirchhoff conditions{

∂ψ(A)

∂t (0, t) = ∂ψ(B)

∂t (0, t) = ∂ψ(C)

∂t (0, t),

AA(0)
∂ψ(A)

∂x (0, t) +AB(0)
∂ψ(B)

∂x (0, t) +AC(0)
∂ψ(C)

∂t (0, t) = 0.
(13)

The system is controlled by the flow u through the vocal folds, and there is an
acoustic resistance at the mouth and nose openings:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ψ(A)

∂x (lA, t) = u(t) at vocal folds,

∂ψ(B)

∂t (lB , t) + θBcB(lB)
∂ψ(B)

∂x (lB , t) = 0 at mouth, and

∂ψ(C)

∂t (lC , t) + θCcC(lC)
∂ψ(C)

∂x (lC , t) = 0 at nose

(14)

where θB and θC are the dimensionless normalised acoustic resistances.
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We proceed to formulate this model as a transmission graph. First, we write

Webster’s equation as a first order system by choosing the state vector as z =
[
ψ
ψt

]
.

The state and solution spaces are

X (j) := h1[0, lj ]× L2(0, lj) and Z(j) := h2[0, lj ]×H1[0, lj ]

respectively, where h1[0, lj ] = H1[0, lj ]
/
∼ and h2[0, lj ] = H2[0, lj ]

/
∼ where the

equivalence relation z ∼ v holds if z− v is constant Lebesgue almost everywhere in
(0, lj). We equip h1[0, lj ] with the norm ‖ψ‖h1[0,lj ] :=

∣∣∣∣∂ψ
∂x

∣∣∣∣
L2(0,lj)

, and the state

spaces with inner products〈
z, v

〉
X (j) := ρ

(∫ lj

0

∂z1
∂x

(x)
∂v1
∂x

(x) Aj(x)dx+

∫ lj

0

z2(x)v2(x)
Aj(x)

cj(x)2
dx

)
where ρ is the fluid density. The induced X (j)-norm corresponds to the physical
energy — the first term gives the kinetic energy of the fluid and the second term
gives the potential energy (recall that acoustic pressure is obtained from the velocity
potential through p(x, t) = ρψt(x, t)). In the solution spaces we use norms

‖z‖2Z(j) := ‖z1‖2h1[0,lj ]
+

∣∣∣∣∣∣∣∣∂2z1
∂x2

∣∣∣∣∣∣∣∣2
L2(0,lj)

+ ‖z2‖2H1[0,lj ]
.

The input and output spaces are U (j) = Y(j) = C
2 with the Euclidian norm. The

interior operators are defined by

L(j) := W (j) +D(j) : Z(j) → X (j)

where

W (j) :=

[
0 1

cj(x)
2

Aj(x)
∂
∂x

(
Aj(x)

∂
∂x

)
0

]
and D(j) :=

[
0 0

0 − 2πθSj(x)cj(x)
2

Aj(x)

]
;

the dissipative part D(j) acts as a bounded perturbation (in X (j)) to the classical
Webster-related part W (j). The input and output operators are defined by

G(j)z(j) :=

[
ρz

(j)
2 (0, t)

ρz
(j)
2 (lj , t)

]
and K(j)z(j) :=

[
−Aj(0)∂z

(A)
1

∂x (0, t)

Aj(lj)
∂z

(j)
1

∂x (lj , t)

]
.

The pressure controlled, velocity observed Webster’s equation can finally be written
in the form ⎧⎨⎩

u(j)(t) = G(j)z(j)(t),
ż(j)(t) = L(j)z(j)(t),
y(j)(t) = K(j)z(j)(t), t ∈ R

+,

and it remains to show that each Ξ(j) = (G(j), L(j),K(j)) satisfies the conditions of
Definitions 2.2 and 2.3.

Theorem 5.1. Each colligation Ξ(j) = (G(j), L(j),K(j)) on spaces
(
C

2,X (j),C2
)

defined above is an impedance passive (even conservative if θ = 0), internally well-
posed, strong boundary node.

Proof. Here we drop the index j, and begin by showing the claim in the special

impedance conservative case Ξ̂ = (G,W,K) on
(
C

2,X ,C2
)
.

It is easy to see that Ξ̂ is a strong colligation, and that G is surjective. Thus, to
show surjectivity of

[
G

α−W
]
it is sufficient to show (α−W )|N (G) to be bijective.
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Fix
[
f
g

] ∈ X (in the following we treat
[
f
g

]
as a representative from the equiva-

lence class) and α 	= 0. We wish to find [ z1z2 ] ∈ N (G), s.t.[
α −1

− c(x)2

A(x)
∂
∂x

(
A(x) ∂∂x

)
α

] [
z1
z2

]
=

[
f
g

]
. (15)

The first row implies αz1 − z2 = f (in H1[0, l]). The condition [ z1z2 ] ∈ N (G) is

equivalent to z2(0) = z2(l) = 0 so that z1(0) =
f(0)
α and z1(l) =

f(l)
α . Multiplying

the first row in (15) with α and adding it to the second row gives

α2z1(x)− c(x)2

A(x)

∂

∂x

(
A(x)

∂z1
∂x

(x)

)
= αf(x) + g(x)

(∈ L2(0, l)
)
.

This equation with the aforementioned boundary conditions has a unique variational
solution z1 ∈ H2[0, l] that satisfies

[ z1
αz1−f

] ∈ N (G). If we solve (15) for a different

representative of the same equivalence class, that is, with right hand side
[
f+C
g

]
where C ∈ C, then we get for (15) the respective solution

[
z1+C/α

α(z1+C/α)−f−C
]
=[

z1+C/α
αz1−f

]
which is in the same equivalence class with

[ z1
αz1−f

]
. Hence, equation

(15) has a unique solution in Z for all
[
f
g

] ∈ X . The Green–Lagrange identity (6)

for Ξ̂ as an equality can be shown by partial integration. The claim is now proved

for Ξ̂ by Proposition 1.
Since D : X → X is bounded, also L|N (G) = (W + D)|N (G) generates a C0-

semigroup by [2, Corollary 3.5.6]. Because S(x) ≥ 0 and θ ≥ 0, it follows〈
z,Dz

〉
X = −2πθρ

∫ l

0

S(x)z2(x)
2 dx ≤ 0

which means that Green–Lagrange identity for Ξ holds as an inequality. Because

bounded perturbations of closed operators are closed, nodes Ξ and Ξ̂ are simulta-
neously strong.

The boundary conditions (13) in the pharynx correspond to conditions (9) and

(10). Thus, after noting that operators
[
G(j)

K(j)

]
are surjective (try polynomial func-

tions in Z), Theorems 3.3 and 5.1 yield:

Theorem 5.2. Define the transmission graph Γ with three control vertices and one
closed vertex by

Γ =
({

Ξ(A),Ξ(B),Ξ(C)
}
, {{(A, 2)}, {(B, 2)}, {(C, 2)}} , {{(A, 1), (B, 1), (C, 1)}}

)
.

The colligation induced by Γ is Ξ = (G,L,K) on spaces
(
C

3,X ,C3
)
where

G

⎡⎣ z(A)

z(B)

z(C)

⎤⎦ :=

⎡⎢⎣ ρz
(A)
2 (lA, t)

ρz
(B)
2 (lB , t)

ρz
(C)
2 (lC , t)

⎤⎥⎦ , L :=

⎡⎣ L(A) 0 0
0 L(B) 0
0 0 L(C)

⎤⎦ , and

K

⎡⎣ z(A)

z(B)

z(C)

⎤⎦ :=

⎡⎢⎢⎣ AA(lA)
∂z

(A)
1

∂x (lA, t)

AB(lB)
∂z

(B)
1

∂x (lB , t)

AC(lC)
∂z

(C)
1

∂x (lC , t)

⎤⎥⎥⎦ , with X := X (A) ⊕X (B) ⊕X (C) and
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dom(Ξ) :=

⎧⎨⎩
⎡⎣ z(A)

z(B)

z(C)

⎤⎦ ∈
⎡⎣ Z(A)

Z(B)

Z(C)

⎤⎦ ∣∣∣∣ z(A)
1 (0, t) = z

(B)
2 (0, t) = z

(C)
2 (0, t),

AA(0)
∂z

(A)
1

∂x (0, t) +AB(0)
∂z

(B)
1

∂x (0, t) +AC(0)
∂z

(C)
1

∂x (0, t) = 0

}
.

Then Ξ is an impedance passive, internally well-posed, strong boundary node. The
node Ξ is conservative if and only if θ = 0.

Here also the vertices corresponding to the mouth and nose are also chosen to be
control vertices which does not correspond to boundary conditions (14). It can be
shown that an impedance passive internally well-posed system remains as one with
such resistive termination but we do not do it here.

6. Remarks and conclusions. Many kinds of passive boundary control systems
can be interconnected with each other so that the composed system is also a pas-
sive and internally well-posed boundary control system. The presented Kirchhoff
couplings are natural when connecting impedance passive systems. We remark that
it is also possible to form partial couplings using the presented techniques. This
is needed, e.g., when beams are connected to each other by a hinge that does not
transmit all the degrees of freedom between the subsystems. This can be done by
splitting the input and output spaces using orthogonal projections and then treating
these as independent inputs and outputs.

However, if the junctions themselves have (finite-dimensional) dynamics then
these methods are not (directly) applicable — consider, for example, a hinge junc-
tion between two beams with a spring or a damper. In such case the resulting system
is not necessarily of boundary control form, and instead, these systems should be
treated in the more general system node setting. See the work of Weiss and Zhao
[29] for this kind of ideas.

All results in this paper require the colligations to be strong in the sense of
Definition 2.1. As mentioned before, there are internally well-posed boundary nodes
(in the sense of [21, Definition 2.2]) that are even impedance conservative and satisfy
U = Y but are not strong. One such example is given in [21, Proposition 6.3] in
terms of the boundary controlled wave equation on Ω ⊂ R

n with smooth boundary
∂Ω. However, the same PDE with the same boundary control can be written as
a strong node at the cost of U 	= Y; these spaces are still a dual pair. Note that
Theorem 3.3 can be applied also in this case even though the smoothness assumption
on ∂Ω seriously restricts the possible couplings of this kind of systems.

Acknowledgments. We thank the anonymous reviewer for pointing out the pos-
sible simplification of the proof of our main theorem (see Remark 2).

REFERENCES

[1] A. Aalto and J. Malinen, Wave propagation in networks: A system theoretic approach,
in “Proceedings of the 18th IFAC World Congress” (eds. S. Bittanti, A. Cenedese and
S. Zampieri), (2011), 8854–8859.

[2] W. Arendt, C. Batty, M. Hieber and F. Neubrander, “Vector-valued Laplace Transforms and
Cauchy Problems,” Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.

[3] J. Cervera, A. J. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems
and composition of Dirac structures, Automatica J. of IFAC, 43 (2007), 212–225.



18 ATTE AALTO AND JARMO MALINEN

[4] R. F. Curtain and H. Zwart, “An Introduction to Infinite-Dimensional Linear Systems The-
ory,” Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995.

[5] V. Derkach, S. Hassi, M. Malamud and H. de Snoo, Boundary relations and their Weyl
families, Transactions of the American Mathematical Society, 358 (2006), 5351–5400.

[6] M. Gugat, G. Leugering, K. Schittkowski and E. J. P. Georg Schmidt, Modelling, stabilization,
and control of flow in networks of open channels, in “Online Optimization of Large Scale
Systems,” Springer, Berlin, (2001), 251–270.
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CONVERGENCE OF DISCRETE TIME KALMAN FILTER
ESTIMATE TO CONTINUOUS TIME ESTIMATE

ATTE AALTO

Department of Mathematics and Systems Analysis,
Aalto University School of Science

Abstract. This article is concerned with the convergence of the state esti-
mate obtained from the discrete time Kalman filter to the continuous time
estimate as the temporal discretization is refined. We derive convergence rate
estimates for different systems, first finite dimensional and then infinite dimen-
sional with bounded or unbounded observation operators. Finally, we derive
the convergence rate in the case where the system dynamics is governed by
an analytic semigroup. The proofs are based on applying the discrete time
Kalman filter on a dense numerable subset of a certain time interval [0, T ].

1. Introduction

It is well known that Kalman filter gives the optimal solution to the state es-
timation problem for discrete time linear systems with Gaussian initial state, and
Gaussian input and output noise processes. The continuous time estimator is gen-
erally known as the Kalman–Bucy filter. These filters have proven to be very robust
and so they have been widely used in practical applications since their introduction
in the 1960s. The implementation is straightforward since especially the discrete
time filter is readily formulated in an algorithmic manner. Thus, it may often be
tempting to use the discrete time filter on the temporally discretized continuous
time system. The purpose of this article is to study the convergence of a state
estimate from discrete time Kalman filter to the continuous time state estimate as
the temporal discretization is refined. In particular, we show convergence speed
estimates for the quadratic error between the discrete time and continuous time
estimate first for finite dimensional systems, then for infinite dimensional systems
with a bounded observation operator, and finally, for systems with unbounded ob-
servation operator.

The class of systems studied here is described by a pair of mappings (A,C) :
X → X × Y and the corresponding dynamics equations⎧⎪⎨⎪⎩

d
dtz(t) = Az(t), t ∈ R+,

z(0) = x,

dy(t) = Cz(t) dt+ dw(t).

(1)

2010 Mathematics Subject Classification. 93E11, 93C57.
Key words and phrases. Kalman filter, infinite dimensional systems, temporal discretization,

sampled data.
1
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Here X is called the state space and Y = Rq is the output space. The mapping A
is the generator of a contractive C0-semigroup eAt on X with domain D(A) and
C : X → Rq is called the observation operator. The observation operator can be
bounded or not but it always maps to a finite dimensional space in this article. The
process y is called the output process. The output noise process w is assumed to be
q-dimensional Brownian motion with incremental covariance matrix R > 0 and the
initial state x is assumed to be an X -valued Gaussian random variable.

The discrete and continuous time state estimates are defined by

x̂T,n := E

(
x
∣∣∣ {y ( iTn )}n

i=1

)
and x̂(T ) := E

(
x
∣∣{y(s), s ≤ T

})
, (2)

respectively. That is, we are estimating the initial state of the system (1). In the
absence of system input (or input noise — deterministic input can be removed by
the usual techniques) it holds that E(z(t)|σ) = eAtE(x|σ). These estimates are
given by the discrete and continuous time Kalman filter, respectively — given that
the continuous time Kalman filter equations are solvable. The purpose of this article
is to study the convergence x̂T,n → x̂(T ) as n→∞.

In Section 2, we cover the necessary background concerning stochastics and the
Kalman filter. In particular, in Section 2.1, it is shown that x̂T,n → x̂(T ) strongly in
X almost surely. Gaussian random variables and the Kalman filter are introduced
in Section 2.2. In Section 2.3 we show how to take into account an intermedi-
ate measurement in Kalman filtering — an important tool in the article. Sec-
tion 3 contains the main results of this article, namely estimates of the convergence
speed of E

(
||x̂T,n − x̂(T )||2X

)
when n is increased first for finite dimensional systems

(Thm. 3.1) and then for infinite dimensional systems with bounded (Thms. 3.3 and
3.4) and then with unbounded observation operator C (Thm. 3.5) when A is diago-
nalizable. In this case we have to make an assumption on the spectral asymptotics
of A and pose a slight restriction on how badly behaving C can be. The case
where A is not diagonalizable but satisfies a well-posedness condition is treated in
Thm. 3.7. Finally, we show two convergence rate results if A is the generator of an
analytic semigroup (Thms. 3.8 and 3.9).

The Kalman filter performance has been widely studied in literature. Even
though it was originally derived for state estimation for finite dimensional linear
systems with Gaussian input and output noise processes it has proven to be very
robust and thus applicable to a variety of other scenarios. Variants for non-linear
systems have been developed, such as the extended Kalman filter and the unscented
Kalman filter, see the book [19] by Simon. Kalman filter sensitivity to modelling
errors has been studied by for example Sun in [21] and Gelb in [8: Chapter 7]. See
also the recent work [13] by Lee et al. for a study on the effect of modelling errors
in an infinite dimensional example case, namely the one dimensional wave equation.
The effect of state space discretization to Kalman filtering has been studied in, e.g.,
[9] by Germani et al. and in [1] by Aalto.

However, the error that stems from using the discrete time filter on the tem-
porally discretized continuous time system has not received much attention. Two
recent articles, [3] by Axelsson and Gustafsson and [23] by Wahlström et al., have
studied different numerical methods for approximating the matrix exponential eAΔt

and the effect of this approximation on the solution of the corresponding Lyapunov
equations and Kalman filtering. A convergence result of the discrete time Kalman
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filter estimate in finite dimensional setting is shown by Salgado et al. in [18] with-
out convergence rate estimate. They use similar techniques that can also be used
to (formally) obtain the Kalman-Bucy filter as a limit of the discrete time Kalman
filter, as is done for example in [19: Section 8.2] and [8: Section 4.3].

Notation and standing assumptions.
◦ The space of bounded operators from a Hilbert space H1 to another Hilbert

space H2 is denoted by L(H1,H2), and L(H1) = L(H1,H1).
◦ We assume that the state space X is a separable Hilbert space. Denote by
{ek}p/∞k=1 ⊂ X an orthonormal basis for the p/∞-dimensional state space.

◦ A is the generator of a contractive C0-semigroup on X . The semigroup is
denoted by eAt even though A is not bounded in general.

◦ The space D(A) is equipped with the graph norm ||x||2D(A) = ||x||2X + ||Ax||2X
which makes D(A) a Hilbert space since A is closed.

◦ C ∈ L(D(A),Y). This is a minimal assumption, and sometimes we assume
more. The output space is always finite dimensional, Y = R

q.
◦ Ω is a probability space and L2(Ω;X ) is the space of X -valued random

variables x satisfying E

(
||x||2X

)
<∞.

◦ The sigma algebra generated by a random variable h is denoted by σ{h}.
◦ To improve readability, we use index n only when referring to the discretiza-

tion level in the state estimate x̂T,n defined in (2), index k only to denote
different dimensions of the state space, and index j only when referring to
the martingale x̃j defined below in Section 2.1.

2. Background and preliminary results

As mentioned above, the proofs of this article are based on applying the discrete
time Kalman filter on a dense, numerable subset on the interval [0, T ] — starting
from the discrete time state estimate x̂T,n — and computing an upper bound for
the change in the estimate. In section 2.1, we establish that the limit thus obtained
is indeed x̂(T ). Gaussian random variables and the Kalman filter are discussed in
Section 2.2. In Section 2.3 it is shown how an intermediate observation is taken
into account in the state estimate.

2.1. Stochastics. In the cases where the state space X is infinite dimensional it
is always assumed either that x ∈ D(A) almost surely or that C ∈ L(X ,Y). This
guarantees that the stochastic process y given by (1) has almost surely continuous
sample paths. Let {ti}∞i=1 be a dense subset of the interval [0, T ] and denote Tj :=
{ti}ji=1. Now let x be an integrable X -valued random variable and y a stochastic
process with almost surely continuous sample paths. Then [x]k := 〈x, ek〉X is an
integrable R-valued random variable for each k. Define the martingales [x̃j ]k :=
E(〈x, ek〉X |Fj) where Fj is the sigma algebra generated by {y(t), t ∈ Tj}, that is,
Fj = σ {y(t), t ∈ Tj}. It holds that E(|[x̃j ]k|) ≤ E(|〈x, ek〉X |) for all j and thus
by Doob’s Martingale convergence theorem (see [16: Appendix C], in particular,
Theorem C.6 and Corollary C.9), [x̃j ]k → [x̃∞]k almost surely. As y has continuous
sample paths, it holds that [x̃∞]k = E(〈x, ek〉X |{y(s), s ≤ T }) almost surely. Using
this componentwise implies that x̃j := E(x|Fj) =

∑∞
k=1[x̃j ]kek converges strongly

(in X ) almost surely to x̃∞ =
∑∞
k=1[x̃∞]kek.
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Below we sometimes need the assumption that x ∈ D(A) almost surely. With
Gaussian random variables this means that x is actually a D(A)-valued random
variable.

Proposition 2.1. Let z be an X -valued Gaussian random variable s.t. z ∈ X1

almost surely where X1 ⊂ X is another Hilbert space with continuous and dense
embedding. Then z is an X1-valued Gaussian random variable.

Proof. Pick h ∈ X1. We intend to show that 〈z, h〉X1
is a real-valued Gaussian

random variable. For h ∈ X1 there exists x ∈ X ′
1, the dual space of X1, s.t.

〈z, h〉X1
= 〈z, x〉(X1,X ′

1)
and further, there exists a sequence {xi}∞i=1 ⊂ X such that

〈z, x〉(X1,X ′
1)

= limi→∞ 〈z, xi〉X . Now 〈z, xi〉X is a pointwise converging sequence of
Gaussian random variables and so the limit is also Gaussian. �
Fernique’s theorem [6: Theorem 2.6] can be applied to note that if x is an X1-
valued Gaussian random variable then x ∈ Lp(Ω;X1) for any p > 0. In particular,
E

(
||x||2X1

)
< ∞ and if C ∈ L(X1,Y) then Cx is a Y-valued Gaussian random

variable.

2.2. Kalman filter. The discrete time Kalman filter was originally presented in
[11]. The continuous time filter is known as the Kalman–Bucy filter, and it was
presented in [12]. We also refer to the book [8] by Gelb for a thorough introduction
to both discrete and continuous time Kalman filters as well as the usual techniques
needed in different scenarios. Of course, the original presentations are in finite
dimensional setting. The infinite dimensional generalization of the discrete time
Kalman filter is rather straightforward, and it can be found for example in [10] by
Horowitz. The infinite dimensional Kalman–Bucy filter is considered by Curtain
and Pritchard in [4: Chapter 6]. For what comes to the continuous time filter
in infinite dimensions, care must be taken to make sure that the crucial operator-
valued error covariance equation is solvable. This problem is considered for example
by Flandoli in [7] and Da Prato and Ichikawa in [5] in the case of an analytic
semigroup with unbounded control and observation operators. In our proofs, we do
not even need to be concerned with the solvability of the continuous time equations.
Our approach is based on using the discrete time Kalman filter on a numerable
set {tj} that is dense on an interval [0, T ], and showing that this state estimate
converges. In this section we thus review the discrete time Kalman filter equations.

The Kalman filter is based on the fact that with linear systems with Gauss-
ian initial state and input and output noise processes, the state vector remains a
Gaussian stochastic process. Also, the conditional expectation of the state with re-
spect to the measurements is a Gaussian process. The statistical properties of the
Gaussian X -valued random variable x are completely characterized by the mean
m = E(x) ∈ X and the covariance operator P = Cov [x, x] ∈ L(X ), defined for
h ∈ X by Cov [x, x] h := E((x−m) 〈x−m,h〉X ). Thus it is meaningful to write
x ∼ N(m,P ) meaning that x is a Gaussian random variable with mean m and
covariance P . The covariance operator is symmetric and nonnegative and, in addi-
tion, it is a trace class operator with tr(P ) = E

(
||x−m||2X

)
, see [6: Lemma 2.14 &

Proposition 2.15]. In fact, by Fernique’s theorem, Gaussian random variables are
p-integrable for every p > 0.

For square integrable random variables, the conditional expectation with respect
to a random variable h is a projection onto the subspace generated by h. With
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jointly Gaussian random variables h1 ∈ X and finite dimensional h2, this projection

has an easy representation. That is, if h =

[
h1

h2

]
∼ N

([
m1

m2

]
,

[
P11 P12

P ∗
12 P22

])
then

E(h1|h2) = m1 + P12P
+
22(h2 −m2)

where P+
22 denotes the (Moore-Penrose) pseudoinverse of P22. The error covariance

is
Cov [h1 − E(h1|h2) , h1 − E(h1|h2)] = P11 − P12P

+
22P

∗
12.

Now applying the above equations to a Gaussian random variable [h1, h2, h3] where
h2 and h3 are finite dimensional, and the 2-by-2 blockwise matrix inversion formula
to Cov

[[
h2

h3

]
,
[
h2

h3

]]
leads directly to

E(h1|[h2, h3]) =E(h1|h2) + Cov [h1 − E(h1|h2) , h3 − E(h3|h2)]× (3)

× Cov [h3 − E(h3|h2) , h3 − E(h3|h2)]
+
(h3 − E(h3|h2))

and

Cov [h1 − E(h1|[h2, h3]) , h1 − E(h1|[h2, h3])] (4)
= Cov [h1 − E(h1|h2) , h1 − E(h1|h2)]− Cov [h1 − E(h1|h2) , h3 − E(h3|h2)]

× Cov [h3 − E(h3|h2) , h3 − E(h3|h2)]
+

× Cov [h3 − E(h3|h2) , h1 − E(h1|h2)] .

These equations make it possible to update the state estimate (here E(h1|h2))
recursively when a new measurement (here h3) is obtained from the system.

From (3) we get the covariance for the increment E(h1|[h2, h3])− E(h1|h2),

Cov [E(h1|[h2, h3])− E(h1|h2) ,E(h1|[h2, h3])− E(h1|h2)]

= Cov [h1 − E(h1|h2) , h3 − E(h3|h2)]Cov [h3 − E(h3|h2) , h3 − E(h3|h2)]
+

× Cov [h3 − E(h3|h2) , h1 − E(h1|h2)] ,

and further,

E

(
||E(h1|[h2, h3])− E(h1|h2)||2X

)
= tr

(
Cov [h1 − E(h1|h2) , h3 − E(h3|h2)]Cov [h3 − E(h3|h2) , h3 − E(h3|h2)]

+

× Cov [h3 − E(h3|h2) , h1 − E(h1|h2)]
)
,

that is, the squared L2(Ω;X )-norm of the change in the state estimate is the trace
of the change in the error covariance. This fact will be used multiple times in the
proofs below.

The familiar discrete time Kalman filter equations follow directly from (3) and
(4) if h1 is chosen to be the current state xi that is to be estimated, h2 consists of
the old outputs [y1, . . . , yi−1], and h3 is the new output yi.

2.3. Intermediate observations. The convergence rate estimates are based on
computing how much x̂T,n can change at most (measured with the L2(Ω;X )-norm)
when more and more output values y(t) are taken into account from the intervals t ∈
((i− 1)T/n, iT/n) for i = 1, . . . , n. In this section, it is shown how an intermediate
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measurement is taken into account. Consider the output of the system (1), dy(t) =
CeAtx dt+ dw(t), which is a shortened notation for

y(t) = C

∫ t

0

eAsx ds+ w(t) (5)

where A and C are (possibly unbounded) operators from X to X and Y = Rq,
respectively, and w is a Brownian motion with incremental covariance matrix R.

Assume we have a state estimate x̃j := E(x|{y(t1), y(t2), . . . , y(tj)}) for the initial
state x, and the corresponding error covariance Pj := Cov [x− x̃j , x− x̃j ]. Now the
next measurement to be taken into account in state estimation is y(tj+1). Say tj+1 ∈
(ta, tb) for some a, b ∈ {1, . . . , j} and that this interval does not contain any earlier
included measurements, that is ti /∈ (ta, tb) for i = 1, . . . , j. The new state estimate
x̃j+1 and the corresponding error covariance Pj+1 := Cov [x− x̃j+1, x− x̃j+1] are
given by (3) and (4), respectively, if we set h1 = x, h2 = [y(t1), y(t2), . . . , y(tj)],
and h3 = y(tj+1).

To get a simple representation for the covariances in (3) and (4), define a new
output

ỹ := y(tj+1)− tb − tj+1

tb − ta
y(ta)− tj+1 − ta

tb − ta
y(tb).

That is, ỹ is y(tj+1) from which the linear interpolant between y(ta) and y(tb) has
been removed. By plugging (5) here, this can be written in the form ỹ = C̃x + w̃
where

C̃ = C

∫ tj+1

0

eAs ds− C
tb − tj+1

tb − ta

∫ ta

0

eAs ds− tj+1 − ta
tb − ta

∫ tb

0

eAs ds

= C

(
tb − tj+1

tb − ta

∫ tj+1

ta

eAs ds− tj+1 − ta
tb − ta

∫ tb

tj+1

eAs ds

)
and

w̃ = w(tj+1)− tb − tj+1

tb − ta
w(ta)− tj+1 − ta

tb − ta
w(tb).

Since w is Brownian motion, it holds that w̃ ∼ N
(
0,

(tj+1−ta)(tb−tj+1)
tb−ta R

)
and w̃ is

independent of the already included measurements (that is, of h2) and hence of x̃j ,
as well. Thus E(ỹ|h2) = C̃x̃j ,

Cov
[
x− x̃j , ỹ − C̃x̃j

]
= PC̃∗,

and

Cov
[
ỹ − C̃x̃j , ỹ − C̃x̃j

]
= C̃P C̃∗ +

(tj+1 − ta)(tb − tj+1)

tb − ta
R.

By (3), the new estimate x̃j+1 := E(x|{y(t1), y(t2), . . . , y(tj+1)}) is given by

x̃j+1 = x̃j + PjC̃
∗
(
C̃PjC̃

∗ +
(tj+1 − ta)(tb − tj+1)

tb − ta
R

)−1 (
ỹ − C̃x̃j

)
(6)

and by (4), the new error covariance Pj+1 := Cov [x− x̃j+1, x− x̃j+1] by

Pj+1 = Pj − PjC̃
∗
(
C̃PjC̃

∗ +
(tj+1 − ta)(tb − tj+1)

tb − ta
R

)−1

C̃Pj . (7)
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This will be used with tb − tj+1 = tj+1 − ta = h, and we define

Ch(t)x :=
C

2

(∫ t

t−h
eAsx ds−

∫ t+h

t

eAsx ds

)
, for t ≥ h > 0. (8)

Lemma 2.2. If C ∈ L(D(A),Y) then Ch(t) ∈ L(X ,Y). If C ∈ L(X ,Y) then it
holds that

(i) ||Ch(t)||L(X ,Y) ≤ h ||C||L(X ,Y) and

(ii) ||Ch(t)||L(D(A),Y) ≤
h2

2
||A||L(D(A),X ) ||C||L(X ,Y).

In finite dimensional case ||A||L(D(A),X ) means plainly the matrix norm of A. In
infinite dimensional case ||A||L(D(A),X ) = 1 because D(A) is equipped with the graph
norm of A.

This could also be shown for more general C̃ with tb − ta replacing h in (i) and
(tj+1−ta)2

2 +
(tb−tj+1)

2

2 replacing h2 in (ii) but that is not needed. Also, part (ii)
can be made a bit better. In fact, ||Ch(t)x||Y ≤ h2

2 ||C||L(X ,Y) ||Ax||X .

Proof. First assume just C ∈ L(D(A),Y). If x ∈ X then
∫ t+h
t eAsx ds ∈ D(A) since∣∣∣∣∣

∣∣∣∣∣
∫ t+h

t

eAsx ds

∣∣∣∣∣
∣∣∣∣∣
2

D(A)

=

∣∣∣∣∣
∣∣∣∣∣
∫ t+h

t

eAsx ds

∣∣∣∣∣
∣∣∣∣∣
2

X
+

∣∣∣∣∣
∣∣∣∣∣A

∫ t+h

t

eAsx ds

∣∣∣∣∣
∣∣∣∣∣
2

X

≤ h2 ||x||2X +
∣∣∣∣∣∣(eA(t+h) − eAt

)
x
∣∣∣∣∣∣2
X
≤ (

h2 + 4
) ||x||2X .

Then ||Ch(t)||L(X ,Y) ≤
√
h2 + 4 ||C||L(D(A),Y).

Then assume C ∈ L(X ,Y). Part (i) of the Lemma is clear from the defini-
tion (8) since eAt is contractive. For part (ii), note that CeAtx ∈ C1(R+;Y) with
d
dtCeAtx = CAeAtx and

∣∣∣∣CAeAtx
∣∣∣∣
Y ≤ ||C||L(X ,Y) ||A||L(D(A),X ) ||x||D(A). Then by

Bochner integral properties, C can be taken inside the integral and thus∫ t

t−h
CeAsx ds−

∫ t+h

t

CeAsx ds

=

∫ t

t−h

(
CeAtx−

∫ t

s

CAeArx dr

)
ds−

∫ t+h

t

(
CeAtx+

∫ s

t

CAeArx dr

)
ds

=−
∫ t

t−h

∫ t

s

CAeArx dr ds−
∫ t+h

t

∫ s

t

CAeArx dr ds.

This together with the bound for
∣∣∣∣CAeAtx

∣∣∣∣
Y imply (ii). �

3. Convergence results

3.1. Finite dimensional systems. We begin by showing a convergence rate es-
timate in the case of a finite dimensional system. This result could be obtained as
a special case of Thm. 3.4 below since x ∈ D(A) holds trivially in the finite dimen-
sional state space. However, the proofs of all cases follow the same outline and in
order to convey the idea of the proofs as clearly as possible, we give a complete
proof of the simplest, finite dimensional case.
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Theorem 3.1. Let now X = Rp and A ∈ Rp×p and C ∈ Rq×p (with q ≤ p) and
let x̂T,n and x̂(T ) be as defined above in (2). Then

E

(
||x̂T,n − x̂(T )||2X

)
≤ MT 3

n2

where M = tr(Pn)
2||C||2||A||2

6min(eig(R)) and Pn = Cov [x− x̂T,n, x− x̂T,n].

The constant M depends on n through Pn which is the error covariance of the
discrete time state estimate x̂T,n. It holds that Pn ≤ P0 and so tr(Pn) ≤ tr(P0).
So a strict a priori result is obtained if Pn is replaced by P0 in M .

Proof. The outline of the proof is as follows. First, we define the martingale x̃j
as in Section 2.1. That is, x̃j = E(x|Fj), where Fj = σ{y(t), t ∈ Tj} and Tj =

{ti}ji=1. The martingale is Gaussian and hence square integrable, and so we have
the following telescope identity for L,N ∈ N with L ≥ N :

E

(
||x̃L − x̃N ||2X

)
=

L−1∑
j=N

E

(
||x̃j+1 − x̃j ||2X

)
. (9)

Second, we find an upper bound for E

(
||x̃j+1 − x̃j ||2X

)
using the results of Sec-

tion 2.3. Third, we prove that the sum in (9) converges as L→∞ and thus x̃j is a
Cauchy sequence in L2(Ω;X ). It has a limit in this space by completeness and the
limit must be x̂(T ) by the considerations in Section 2.1. Also, setting N = n (we
have x̃n = x̂T,n) and letting L→∞ in (9) gives E

(
||x̂T,n − x̂(T )||2X

)
.

(I) Martingale x̃j : Let ti = iT/n for i = 1, . . . , n. Then x̃j for j = 1, . . . , n
are the state estimates from the discrete time Kalman filter and, in particular,
x̃n = x̂T,n defined in (2). The idea is to then halve the intervals ((i− 1)T/n, iT/n)
for i = 1, . . . , n between the already included measurements. That is, we include
n measurements y

(
(i−1/2)T

n

)
for i = 1, . . . , n. Then we halve the new intervals

((i − 1)T/2n, iT/2n) for i = 1, . . . , 2n by including 2n measurements y
(

(i−1/2)T
2n

)
for i = 1, . . . , 2n and so on.

(II) Increment x̃j+1 − x̃j: Assume that the current state estimate is x̃j with
j ≥ n, the corresponding error covariance matrix is Pj , and the next measure-
ment being included is y

(
iT/n− 2l−1

2K
T/n

)
with some i ∈ {1, . . . , n}, K ∈ N,

and l ∈ {1, . . . , 2K−1}. The new state estimate x̃j+1 is then given by (6) with
C̃ = Ch

(
iT/n− 2l−1

2K T/n
)

— denoted below simply by Ch — and h = T
2Kn . We

are only interested in the L2(Ω;X )-norm of the increment, and as discussed in
Section 2.2, it is obtained from the covariance increment given in (7):

E

(
||x̃j+1 − x̃j ||2X

)
= tr

(
PjC

∗
h(ChPjC

∗
h + h/4R)−1ChPj

)
.

Now we wish to establish a bound for this trace. To this end, recall that the norm
of the inverse of a positive definite matrix is

∣∣∣∣Q−1
∣∣∣∣ = 1

min(eig(Q)) , and thus,∣∣∣∣∣
∣∣∣∣∣
(
ChPjC

∗
h +

h

4
R

)−1
∣∣∣∣∣
∣∣∣∣∣ ≤ 4

hmin(eig(R))
=:

CR
h

. (10)
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Using this and part (ii) of Lemma 2.2 gives

tr

(
PjC

∗
h

(
ChPjC

∗
h +

h

4
R

)−1

ChPj

)
=

p∑
k=1

〈
ChPjek,

(
ChPjC

∗
h +

h

4
R

)−1

ChPjek

〉

≤ CR
h

p∑
k=1

||ChPjek||2Y

=
CR
h

p∑
k=1

∣∣∣∣E(Ch(x̃j − x) 〈x̃j − x, ek〉X
)∣∣∣∣2

Y

≤ CR
h

E

(
||Ch(x̃j − x)||2Y

) p∑
k=1

E

(
〈x̃j − x, ek〉2X

)
≤ CR

h
tr(ChPjC∗

h)tr(Pj) (11)

≤ h3

min(eig(R))
||C||2 ||A||2 tr(Pj)2. (12)

(III) Convergence: It holds that tr(Pj) ≤ tr(Pn). In part (II) of the proof
we had h = 2−KT/n and that bound is used for all 2K−1n new measurements
corresponding to this h. Finally, setting N = n and L → ∞ in (9) and using (12)
to bound the terms of the sum yields

E

(
||x̂T,n − x̂(T )||2X

)
≤

∞∑
K=1

2K−1n

(
T

2Kn

)3 tr(Pn)2 ||C||2 ||A||2
min(eig(R))

=
tr(Pn)2 ||C||2 ||A||2 T 3

6min(eig(R))n2

completing the proof. �

3.2. Infinite dimensional systems with bounded C. We move on to infinite
dimensional state space X . Compared to the finite dimensional case, the main
difficulty arises from that the bound for Ch in part (ii) of Lemma 2.2 utilizes the
differentiability of CeAtx and thus it holds for x ∈ D(A). A natural assumption
that would make it possible to use this bound is that x is a D(A)-valued random
variable. This is exactly what is done in Theorem 3.4. Before that, in Theorem 3.3
we shall see, however, that a reasonable convergence estimate can be obtained with
slightly less smooth initial state x. Before tackling this problem, we present an
example illuminating the necessity of some additional assumptions.

Example 3.2. This example shows that there is a system with C ∈ L(X ,R)

such that E
(
||x̂T,n − x̂(T )||2X

)
converges arbitrarily slowly where x̂T,n and x̂(T ) are

defined in (2). Consider the one-dimensional wave equation with augmented state
vector, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

d

dt

[
z(s, t)

v(s, t)

]
=

[
0 I
∂2

∂s2 0

][
z(s, t)

v(s, t)

]
, s ∈ [0, 1], t ∈ R+,

z(s, 0) = 0, v(s, 0) = x(s),

dy(t) = Cz(t) dt+ dw(t)

(13)

in state space X = H1
0 [0, 1]× L2(0, 1) and D(A) = (

H2[0, 1] ∩H1
0 [0, 1]

)×H1
0 [0, 1].

The output operator C ∈ L(X ,R) is given by Cz =
∫ 1

0
c(s)z(s) ds where c(s) =∑∞

k=1 ckek(s) with some {ck} ∈ l2 and {ek} is the orthonormal basis in L2(0, 1)
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formed by the sine functions, that is ek(s) = 1√
2
sin(kπs). The initial velocity

is x =
∑∞

k=1 ake2k where ak ∼ N(0, σ2
k) and ak ⊥ ai for k 	= i. It holds that

E

(
||x||2X

)
=

∑∞
k=1 σ

2
k and thus this sum is assumed to converge. Then the solution

to (13) and the corresponding output are⎧⎪⎨⎪⎩
z(s, t) = 1√

2

∑∞
k=1 ak sin(2

kπs) sin(2kπt),

v(s, t) = 1√
2

∑∞
k=1 ak sin(2

kπs) cos(2kπt),

dy(t) = 1√
2

∑∞
k=1 akc2k sin(2

kπt) dt+ dw(t).

Now set T = 1 and consider the subsequence x̂T,2l of the discrete time estimates,

defined in (2). As noted in the proof of Thm. 3.1, it holds that E
(∣∣∣∣x̂T,2l − x̂(T )

∣∣∣∣2
X
)
=∑∞

i=l E

(∣∣∣∣x̂T,2i+1 − x̂T,2i
∣∣∣∣2
X

)
. The estimate x̂T,2l+1 is obtained from the previous

estimate x̂T,2l by including measurements y
(
2i−1
2l+1

)
for i = 1, . . . , 2l as described

in Section 2.3. In order to obtain a lower bound for E

(∣∣∣∣x̂T,2l+1 − x̂T,2l
∣∣∣∣2
X

)
, de-

fine Ĉ := [Ch(h), Ch(3h), . . . , Ch(1 − h)]T : X → R2l where h = 1
2l+1 . That is, Ĉ

gives the whole batch of the measurements needed for the update. Then denoting
Pl = Cov

[
x̂T,2l − x, x̂T,2l − x

]
, it holds that

E

(∣∣∣∣x̂T,2l+1 − x̂T,2l
∣∣∣∣2
X

)
= tr

(
PlĈ

∗
(
ĈPlĈ

∗ +
h

4
RI

)−1

ĈPl

)

≥
〈
ĈPle2l+1 ,

(
ĈPlĈ

∗+
h

4
RI

)−1

ĈPle2l+1

〉
R2l

≥

∣∣∣∣∣∣ĈPle2l+1

∣∣∣∣∣∣2
R2l

max
(
eig

(
ĈPlĈ∗+ h

4RI
)) .

For h = 2−l it holds that Ch(ih)e2k = 0 when l < k and i = 1, . . . , 2l−1 because
when computing Ch(ih)e2k by (8), the integrals are always over full periods of
the sine function sin(2kπt). When l = k it holds that Ch(ih)e2k =

√
2h
π c2k for

every i = 1, 3, . . . , 2k − 1. So, loosely speaking, the already included output values
y
(
2i−1
2l

)
do not carry any information on ak for k > l. Thus Ple2l+1 = σ2

l+1e2l+1

and
∣∣∣∣∣∣ĈPle2l+1

∣∣∣∣∣∣2
R2l

= 2lσ2
l+1

(√
2h
π c2l+1

)2

. For the denominator it holds by part (i)
of Lemma 2.2 that

max

(
eig

(
ĈPlĈ

∗+
h

4
RI

))
≤ h

4
R+ E

(∣∣∣∣∣∣Ĉx
∣∣∣∣∣∣2
R2l

)
≤ h

4
R + 2lh2 ||C||2L(X ,R) tr(P0).

Recalling h = 1
2l+1 , we finally get E

(∣∣∣∣x̂T,2l+1− x̂T,2l
∣∣∣∣2
X

)
≥ 4σ2

l+1c
2

2l+1

π2R+2π2||C||2L(X,R)tr(P0)
and

further

E

(∣∣∣∣x̂T,2l − x̂(T )
∣∣∣∣2
X
)
≥ 4

∑∞
i=l+1 σ

2
i c

2
2i

π2R+ 2π2 ||C||2L(X ,R) tr(P0)

where there is no h-dependence and the variances {σ2
k} can be chosen so that the

convergence is arbitrarily slow, concluding the example.

Clearly some additional assumptions are needed for getting any convergence
rate estimates. In the following theorem, the initial state is assumed to be so
smooth that the covariance operator satisfies P0 ∈ L(X ,D(A)). The problem here
is that ||Pj ||L(X ,D(A)) is not necessarily decreasing as more measurements are taken
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into account. Thus the convergence speed estimate has to be based on the initial
covariance P0.

Theorem 3.3. Let x̂T,n and x̂(T ) be as defined in (2) and assume C ∈ L(X ,Y).
Assume x ∼ N(m,P0) where the covariance operator satisfies P0 ∈ L(X ,D(A)).
Then

E

(
||x̂T,n − x̂(T )||2X

)
≤ MT 2

n

where M =
q tr(Pn)||P0||L(X,D(A)) ||C||2L(X,Y)

min(eig(R)) and Pn = Cov [x− x̂T,n, x− x̂T,n].

Proof. The main idea of the proof is the same as in the proof of Theorem 3.1 and
we note that every step taken until equation (11) in that proof can be taken in the
infinite dimensional setting as well — p just has to be replaced by ∞ in the sums
but this does not cause any problems.

So we pick up from (11) and note first that

tr (ChPjC∗
h) ≤ q ||ChPjC∗

h||L(Y) = q sup
||y||Y=1

〈y, ChPjC∗
hy〉Y

=q sup
||y||Y=1

〈C∗
hy, PjC

∗
hy〉X ≤ q sup

||y||Y=1

〈C∗
hy, P0C

∗
hy〉X = q ||ChP0C

∗
h||L(Y)

where q = dim(Y). The inequality Pj ≤ P0 was used in X , but now the L(X ,D(A))-
norm can be used for P0. Then using both parts (i) and (ii) of Lemma 2.2 gives

||ChP0C
∗
h||L(Y) ≤

h3

2
||C||2L(X ,Y) ||P0||L(X ,D(A)) .

As before, this leads to an estimate

E

(
||x̂T,n − x̂(T )||2X

)
≤ q tr(Pn) ||P0||L(X ,D(A)) ||C||2L(X ,Y) T

2

min(eig(R))n
=:

MT 2

n

completing the proof. �
Checking the assumption P0 ∈ L(X ,D(A)) might be difficult. Under the stronger
smoothness assumption x ∈ D(A) almost surely, we get the same convergence rate
as in the finite dimensional case:

Theorem 3.4. Make the same assumptions as in Theorem 3.3. Assume, in addi-
tion, that x ∈ D(A) almost surely. Then

E

(
||x̂T,n − x̂(T )||2X

)
≤ MT 3

n2

where M =
tr(Pn)tr(APnA

∗)||C||2L(X,Y)

6min(eig(R)) and Pn = Cov [x− x̂T,n, x− x̂T,n].

Proof. The proof is the same as that of Theorem 3.1 but from Eq. (11) we proceed
differently. It holds that

tr (ChPjC∗
h) ≤ tr (ChPnC∗

h) = E

(
||Ch(x− x̂T,n)||2Y

)
≤ h4

4
||C||2L(X ,Y) E

(
||A(x − x̂T,n)||2X

)
where the last inequality holds by part (ii) of Lemma 2.2. The term is finite by
Proposition 2.1 and Fernique’s theorem. Further, it holds that E

(
||A(x− x̂T,n)||2X

)
=

tr(APnA∗). Now the result follows as above. �
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3.3. Unbounded observation operator C. We proceed to prove a similar result
for systems with unbounded observation operator C — provided that A is (unitar-
ily) diagonalizable. The proof is quite similar to that of Theorem 3.3. Again the
main difference is how we proceed from (11). To get a useful bound for tr(ChPjC∗

h),
some assumptions on C and the spectral asymptotics of A are required.

Theorem 3.5. Let x̂T,n and x̂(T ) be as defined above in (2). Denote by {μk + iλk}∞k=1

the spectrum of A ordered so that |μk + iλk| is non-decreasing and let {ek}∞k=1 ⊂
D(A) be the corresponding set of eigenvectors that give an orthonormal basis for X .
Make the following assumptions on x, A, and C:

(i) x ∈ D(A) almost surely;
(ii) μk ≤ 0 for all k, and there exists δ > 1/2 such that

lim
k→∞

|μk + iλk|
kβ

=

{
0 when β > δ,
∞ when β < δ;

(iii) There exists γ ∈ [0, 1) such that 2γ + 1/δ < 2 and

sup
k

||Cek||Y
|μk + iλk|γ <∞.

Then the following holds:
• If limk→∞

|μk+iλk|
kδ

= Γ ∈ (0,∞), then

E

(
||x̂T,n − x̂(T )||2X

)
≤ MT 3−2γ−1/δ

n2−2γ−1/δ

where the constant M is given below in (15).
• If either this limit does not exist, or it is 0 or∞, then for all ε ∈

(
0, δ − 1

2−γ
)

E

(
||x̂T,n − x̂(T )||2X

)
≤ MεT

3−2γ−1/(δ+ε)

n2−2γ−1/(δ−ε)

where the ε-dependent constant Mε is given below also in (15) but with
different, ε-dependent parameters (see the last paragraph of the proof).

For example, 1D wave equation on interval [0, L] with Dirichlet boundary conditions
in the natural state space where some pointwise value of the state is observed,
satisfies the assumptions of the above theorem with δ = 1 and γ = 0. The limit
of |μk+iλk|

k as k → ∞ exists and it is Γ = π
2L . This would imply convergence rate

E

(
||x̂T,n − x̂(T )||2X

)
≤ MT 2

n .

Proof. Assume first that limk→∞
|μk+iλk|

kδ
= Γ ∈ (0,∞). Note that assumption

(i) with Proposition 2.1 and Fernique’s theorem imply that E

(
||Ax||2X

)
< ∞. De-

noting x = x̂T,n +
∑∞

k=1 αkek, this condition can be expressed as E

(
||Ax̂T,n||2X

)
+

E
(∑∞

k=1 |μk + iλk|2α2
k

)
< ∞. Again the proof proceeds exactly as the proof of

Theorem 3.3 until Equation (11).
As in the proof of Theorem 3.4, note that tr(ChPjC∗

h) ≤ tr(ChPnCh(t)∗) =

E

(
||Ch(x− x̂T,n)||2Y

)
. Then

Ch(x − x̂T,n) =

∞∑
k=1

αk
2

(∫ t

t−h
e(μk+iλk)sds−

∫ t+h

t

e(μk+iλk)sds

)
Cek. (14)
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For the term inside parentheses, we have∣∣∣∣∣
∫ t

t−h
e(μk+iλk)sds−

∫ t+h

t

e(μk+iλk)sds

∣∣∣∣∣ ≤ h2 sup
s≥0

∣∣∣∣ ddse(μk+iλk)s

∣∣∣∣ = h2|μk + iλk|,

since μk ≤ 0. On the other hand, computing the integrals yields∣∣∣∣∣
∫ t

t−h
e(μk+iλk)sds−

∫ t+h

t

e(μk+iλk)sds

∣∣∣∣∣ ≤ 4

|μk + iλk| .

Now the idea is to bound the sum in (14) by using the first bound for small k and
the latter for large k. Define the index n(h) := �h−1/δ� for splitting the sum to get

||Ch(x− x̂T,n)||Y ≤
n(h)∑
k=1

|αk|
2
||Cek||Y |μk + iλk|h2 +

∞∑
k=n(h)+1

|αk| ||Cek||Y
2

|μk + iλk|
=: (I) + (II).

We then proceed to find upper bounds for the two parts. Using Cauchy-Schwartz
inequality and denoting Γ̂ := supk

|μk+iλk|
kδ

gives

(I) ≤ h2

2

⎛⎝n(h)∑
k=1

α2
k ||Cek||2Y |μk + iλk|2−2γ

⎞⎠1/2⎛⎝n(h)∑
k=1

|μk + iλk|2γ
⎞⎠1/2

≤ h2Γ̂γ

2
MI

⎛⎝n(h)∑
k=1

k2γδ

⎞⎠1/2

where MI =
(∑n(h)

k=1 α2
k ||Cek||2Y |μk + iλk|2−2γ

)1/2

. The sum inside the parentheses

can be bounded from above by the integral
∫ n(h)+1

0
x2γδdx to get

(I) ≤ h2Γ̂γ

2
√
2γδ + 1

MI

√
(n(h) + 1)2γδ+1

≤ 3δΓ̂γ

2
√
2γδ + 1

MIh
2−γ− 1

2δ ≤ 3δΓ̂γ

2
MIh

2−γ− 1
2δ

where the last row follows from the facts that√
(n(h) + 1)2γδ+1 ≤

√
(h−1/δ + 2)2γδ+1 = (1 + 2h1/δ)γδ+

1
2h−γ− 1

2δ ≤ 3δh−γ− 1
2δ

if h ≤ 1, and that 2γδ + 1 > 1.
For the second part, assume |μk + iλk| ≥ Γ̌kδ for k ≥ n(h) + 1 where Γ̌ = 0.9Γ

for example. Again, using Cauchy-Schwartz inequality yields

(II) ≤ 2

⎛⎝ ∞∑
k=n(h)+1

α2
k ||Cek||2Y |μk + iλk|2−2γ

⎞⎠1/2 ⎛⎝ ∞∑
k=n(h)+1

1

|μk + iλk|4−2γ

⎞⎠1/2

≤ 2

Γ̌2−γMII

⎛⎝ ∞∑
k=n(h)+1

1

k(4−2γ)δ

⎞⎠1/2
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where MII =
(∑∞

k=n(h)+1 α
2
k ||Cek||2Y |μk + iλk|2−2γ

)1/2
. Now the sum inside the

parentheses can be bounded from above by the integral
∫∞
n(h)

1
x(4−2γ)δ dx. Note that

our assumptions on γ and δ imply (4− 2γ)δ > 2. So we get

(II) ≤ 2MII

Γ̌2−γ√(4− 2γ)δ − 1

(
1

n(h)(4−2γ)δ−1

)1/2
≤ 2

Γ̌2−γMIIh
2−γ− 1

2δ

where in the last row we have used n(h) ≥ h−1/δ.
Combining the bounds gives

E

(
||Ch(x− x̂T,n)||2Y

)
≤ 2E

(
(I)2 + (II)2

)
≤ 2

(
M2
I +M2

II

)
max

(
9δΓ̂2γ

4
,

4

Γ̌4−2γ

)
h4−2γ−1/δ

≤ 2E
(
||A(x− x̂T,n)||2X

)
sup
k

||Cek||2Y
|μk + iλk|2γ max

(
9δΓ̂2γ

4
,

4

Γ̌4−2γ

)
h4−2γ−1/δ

=: 2M0E

(
||A(x− x̂T,n)||2X

)
sup
k

||Cek||2Y
|μk + iλk|2γ h

4−2γ−1/δ

where we have used

M2
I +M2

II =
∞∑
k=1

α2
k ||Cek||2Y |μk + iλk|2−2γ ≤

∞∑
k=1

|μk + iλk|2α2
k sup

j

||Cej ||2Y
|μj + iλj |2γ .

Note that we assumed that we could choose for example Γ̌ = 0.9Γ. In some
sense this is not our choice but we need to make sure that the “original” h = T

2n is
small enough so that n(T/(2n)) =

(
2n
T

)1/δ is such that there exists Γ̌ > 0 for which
|μk+iλk|

kδ
≥ Γ̌ for k ≥ n(T/(2n)).

To finish the proof, we continue as in the proof of Theorem 3.3; that is, we
conclude

tr

(
PjC

∗
h

(
ChPjC

∗
h +

h

4
R

)−1

ChPj

)

≤ 2CRM0tr(Pn)tr(APnA∗) sup
k

||Cek||2Y
|μk + iλk|2γ h

3−2γ−1/δ

where Pn = Cov [x− x̂T,n, x− x̂T,n]. Now doing the same summation as before in
part (III) of the proof of Theorem 3.1, it follows that

E

(
||x̂T,n − x̂(T )||2X

)
≤ nCRM0

22−2γ−1/δ − 1
tr(Pn)tr(APnA∗) sup

k

||Cek||2Y
|μk + iλk|2γ

(
T

n

)3−2γ−1/δ

completing the proof in the first case with constant

M =
CRtr(Pn)tr(APnA∗)

22−2γ−1/δ − 1
sup
k

||Cek||2Y
|μk + iλk|2γ max

(
9δΓ̂2γ

4
,

4

Γ̌4−2γ

)
(15)

where CR = 4/min(eig(R)) is defined in (10).
In the case that limk→∞

|μk+iλk|
kδ

is 0,∞, or it does not exist, some modifications
are required to the bounds of (I) and (II). In the bound for (I), δ needs to be
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replaced by δ+ ε and then Γ̂ε = supk
|μk+iλk|
kδ+ε <∞. In the bound for (II), δ needs

to be replaced by δ − ε and then Γ̌ε = infk≥n(h)+1
|μk+iλk |
kδ−ε > 0. �

The assumption (iii) in the theorem differs from our minimal assumption C ∈
L(D(A),Y) which is equivalent to

{ ||Cek||Y
|μk+iλk|

}
∈ l2 for unitarily diagonalizable A.

It is possible to construct a system for which C ∈ L(D(A),Y) but (iii) does not
hold.

Remark 3.6. Theorem 3.5 can be extended to γ < 0. In that case, when deter-
mining the bounds for (I) and (II), the computations are carried out as if γ were
zero. This eventually leads to a bound E

(
||x̂T,n − x̂(T )||2X

)
≤ MT 3−1/δ

n2−1/δ . Note that

if assumption (iii) holds for γ < − 1
2δ then C is actually bounded.

There is no assumption on the diagonalizability of A in the following theorem.
Unfortunately, the obtained convergence rate is not very impressive.

Theorem 3.7. Let x̂T,n and x̂(T ) be as defined above in (2). Make the following
assumptions:

(i) x ∈ D(A) almost surely;
(ii) The orthonormal basis {ek} ⊂ X is such that ek ∈ D(A2) for every k ∈ N

and there exists δ > 1/2 such that for x =
∑∞
k=1 αkek the norm given by√∑∞

k=1 k
2δα2

k is equivalent to the D(A)-norm and
√∑∞

k=1 k
4δα2

k is equiv-
alent to the D(A2)-norm;

(iii) The system is well-posed in the sense that
∣∣∣∣CeA(·)x

∣∣∣∣
L2((0,T );Y)

≤ HT ||x||X
for some HT > 0.

Then

E

(
||x̂T,n − x̂(T )||2X

)
≤ M(T )T 2−1/2δ

n1−1/2δ

with M(T ) = CRtr(Pn)tr(APnA
∗)

21−1/2δ−1
max

(
32δ+1T ||C||2L(D(A),Y)

8δ+4 , HT

2δ−1

)
where CR = 4

min(eig(R))

is defined in (10) and Pn = Cov [x− x̂T,n, x− x̂T,n].

Proof. In this proof, the aforementioned norms are used in D(A) and D(A2). We
need to utilize the global output bound

∣∣∣∣CeA(·)x
∣∣∣∣
L2((0,T );Y)

≤ HT ||x||X . To this

end, define a stacked operator Ĉh := [Ch(h), Ch(3h), . . . , Ch(T−h)]T for h = 2−K T
n

mapping to a product space Y2K−1n. This operator is used to add a whole batch
of intermediate measurements at once as was done in Example 3.2. Below

[
ai
]N
i=1

is used to denote an augmented vector with components ai.
Otherwise the proof proceeds similarly as the proof of Thm. 3.5 but the sum

in (14) is split using the index n(h) = �h−1/2δ� to get
∣∣∣∣∣∣Ĉh(x− x̂T,n)

∣∣∣∣∣∣
Y2K−1n

≤
(I) + (II) where

(I) =

∣∣∣∣∣∣
∣∣∣∣∣∣
n(h)∑
k=1

αk
2

[
C

∫ (2j−1)h

(2j−2)h

eAsek ds− C

∫ 2jh

(2j−1)h

eAsek ds

]2K−1n

i=1

∣∣∣∣∣∣
∣∣∣∣∣∣
Y2K−1n

≤
n(h)∑
k=1

|αk|
2

√
T

2h
h2 ||C||L(D(A),Y) k

2δ ≤
√

Th3

8
||C||L(D(A),Y)

⎛⎝n(h)∑
k=1

k2δα2
k

⎞⎠1/2⎛⎝n(h)∑
k=1

k2δ

⎞⎠1/2
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where the first inequality is obtained by bounding the derivative of CeAtek by∣∣∣∣∣∣∣∣ ddtCeAtek

∣∣∣∣∣∣∣∣
Y
≤ ||C||L(D(A),Y) ||ek||D(A2) = ||C||L(D(A),Y) k

2δ

and using the same argument as in the proof of part (ii) of Lemma 2.2 and noting
that 2K−1n = T

2h . For the remaining part it holds that

(II) =

∣∣∣∣∣∣
∣∣∣∣∣∣

∞∑
k=n(h)+1

αk
2

[
C

∫ (2i−1)h

(2i−2)h

eAsek ds− C

∫ 2ih

(2i−1)h

eAsek ds

]2K−1n

i=1

∣∣∣∣∣∣
∣∣∣∣∣∣
Y2K−1n

≤
∞∑

k=n(h)+1

|αk|
2

√
2hHT ≤

√
h

2
HT

⎛⎝ ∞∑
k=n(h)+1

k2δα2
k

⎞⎠1/2 ⎛⎝ ∞∑
k=n(h)+1

k−2δ

⎞⎠1/2

since it holds that∣∣∣∣∣∣
∣∣∣∣∣∣
[
C

∫ (2i−1)h

(2i−2)h

eAsek ds− C

∫ 2ih

(2i−1)h

eAsek ds

]2K−1n

i=1

∣∣∣∣∣∣
∣∣∣∣∣∣
Y2K−1n

≤
⎛⎝2K−1n∑

i=1

(∫ 2ih

(2i−2)h

∣∣∣∣CeAsek
∣∣∣∣
Y ds

)2⎞⎠1/2

≤
√
2h

∣∣∣∣CeAsek
∣∣∣∣
L2((0,T );Y)

where the last inequality follows from Cauchy-Schwartz inequality. Finally, the re-
sult is obtained by proceeding as in the proof of Thm. 3.5 and doing the summation
over K = 1, 2, . . . . �

The theory of well-posed systems has been extensively studied. A comprehensive
treatment can be found in the book [20] by Staffans. One good example of systems
that satisfy assumption (iii) is provided by scattering passive boundary control
systems, see the article [15] by Malinen and Staffans. This condition is also known
as admissibility of the output operator C, introduced in [24] by Weiss.

3.4. Analytic semigroup eAt. In this section we show the convergence estimate
when A is the generator of an analytic semigroup. One result is first shown without
additional assumptions for bounded and unbounded observation operator C. Then
we assume further that −A is a sectorial operator in X which enables us to treat
non-integer powers (−A)η for η ≥ 0. An example of such case is provided by heat
equation treated below in Example 3.10.

An important tool here is that for analytic semigroups it holds that∣∣∣∣AκeAt∣∣∣∣L(X )
≤ c(κ)

tκ
, t > 0, κ ∈ N (16)

(see [22: Theorem 3.3.1]). This gives

||Ch(t)x||Y ≤
c(1) ||x||X/D(A)

t− h

||C||L(X/D(A),Y)

2
h2, t > h. (17)

For t = h, we can use part (i) of Lemma 2.2.

Theorem 3.8. Let x̂T,n and x̂(T ) be as defined above in (2). Assume A is the
generator of an analytic and contractive C0-semigroup and assume either

(i) C ∈ L(X ,Y), or
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(ii) C ∈ L(D(A),Y) and x ∈ D(A) almost surely.
Then

E

(
||x̂T,n − x̂(T )||2X

)
≤ MT

n

where M = CRtr(Pn) ||C||2L(X/D(A),Y)E

(
||x− x̂T,n||2X/D(A)

)(
1 + c(1)2π2

96

)
and Pn =

Cov [x− x̂T,n, x− x̂T,n].

Proof. The proofs for the two cases are identical so only the case (i) is presented.
In the second case just replace X by D(A) in ||x||X and ||C||L(X ,Y).

As many times before, the proof is based on finding an upper bound for
E

(
||Ch(t)(x − x̂T,n)||2Y

)
. The difference to earlier proofs is that here we use (17)

and the t-dependence of the bound has to be utilized. Because of this, it is not
possible to just multiply a bound found for certain h = T

2Kn
by 2K−1n as has been

done above but instead, we need to calculate and add up all bounds separately,
that is, compute

CRtr(Pn)
h

2K−1n∑
l=1

E

(
||Ch(tl)(x − x̂T,n)||2Y

)
, tl = (2l − 1)h, h =

T

2Kn
(18)

and sum these up for K = 1, 2, . . . . For l = 1, we use ||Ch(h)(x− x̂T,n)||Y ≤
h ||C||L(X ,Y) ||x− x̂T,n||X from part (i) of Lemma 2.2. For l > 1, we use (17) to
obtain

CRtr(Pn)
h

2K−1n∑
l=1

E

(
||Ch(tl)(x− x̂T,n)||2Y

)

≤ CRtr(Pn) ||C||2L(X ,Y) E

(
||x− x̂T,n||2X

)⎛⎝1 +
c(1)2

16

2K−1n−1∑
j=1

1/j2

⎞⎠h

≤ CRtr(Pn)2 ||C||2L(X ,Y)

(
1 +

c(1)2π2

96

)
h.

Now summing up over K = 1, 2, . . . completes the proof. �

Then one more case is treated where A is as before and, in addition, −A is
a sectorial operator, see [2: Section 3.8] for definitions. Then it is possible to
define non-integer powers (−A)η where η ∈ R and spaces D((−A)η) equipped with
the corresponding graph norm. Also (16) holds then for non-integer κ ≥ 0 if A is
replaced by −A, see [22: Thm. 3.3.3]. In particular, if A is strictly negative definite,
then it is sectorial. This type of systems are also studied in [5] and [7].

Theorem 3.9. Let x̂T,n and x̂(T ) be as defined above in in (2). Assume A is the
generator of an analytic and contractive C0-semigroup and, in addition, −A is a
sectorial operator. Then assume C ∈ L(D((−A)ν),Y) and x ∈ D((−A)η) almost
surely where ν ∈ R and η ∈ R are such that |η − ν| < 1/2. Then1

E

(
||x̂T,n − x̂(T )||2X

)
≤ MT 1+2(η−ν)

n1+2(η−ν)

where M is given below in (20).

1This result extends to η − ν = 1/2 in which case the convergence rate is O(T 2n−2 lnn).
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Proof. This is done exactly as the proof of Theorem 3.8 above. Just the bounds
for ||Ch(tl)(x− x̂T,n)||Y in the summation (18) are computed differently. To begin
with, we note that we get from (16) with non-integer κ = 1− η + ν,∣∣∣∣CAeAt(x− x̂T,n)

∣∣∣∣
Y ≤ ||C||L(D((−A)ν),Y) ||x− x̂T,n||D((−A)η)

c(1− η + ν)

t1−η+ν
. (19)

When treating the term with l = 1 in (18), the cases ν ≥ η and ν < η have to
be considered separately. First for ν ≥ η,∣∣∣∣CeAt(x− x̂T,n)

∣∣∣∣
Y =

∣∣∣∣C(−A)−ν(−A)ν−ηeAt(−A)η(x − x̂T,n)
∣∣∣∣
Y

≤ ||C||L(D((−A)ν),Y) ||x− x̂T,n||D((−A)η)

c(ν − η)

tν−η
.

Then for η ≤ ν < 1 + η,

||Ch(h)(x− x̂T,n)||Y ≤ ||C||L(D((−A)ν),Y)||x− x̂T,n||D((−A)η) c(ν − η)

∫ 2h

0

1

sν−η
ds

≤ ||C||L(D((−A)ν),Y)||x− x̂T,n||D((−A)η)

c(ν − η)

1 + η − ν
(2h)1+η−ν .

For ν < η < 1 + ν, one can show a similar bound by the same technique that was
used in the proof of part (ii) of Lemma 2.2. Instead of bounding the derivative
norm

∣∣∣∣CAeAtx
∣∣∣∣
Y by a constant, using (19) gives a bound

||Ch(h)(x− x̂T,n)||Y
≤ ||C||L(D((−A)ν),Y) ||x− x̂T,n||D((−A)η)

c(1− η + ν)

η − ν

21+η−ν − 2

1 + η − ν
h1+η−ν

≤ ||C||L(D((−A)ν),Y) ||x− x̂T,n||D((−A)η)

4 ln 2 c(1− η + ν)

1 + η − ν
h1+η−ν .

To cover l > 1 in (18), we use (19) to get

CRtr(Pn)
h

2K−1n∑
l=1

E

(
||Ch(tl)(x− x̂T,n)||2Y

)
≤M0h

1+2(η−ν)

where M0 is gathered from the used inequalities. Finally summing over K = 1, 2, . . .
yields the result with

M = CRtr(Pn) ||C||2L(D((−A)ν),Y)

E

(
||x− x̂T,n||2D((−A)η)

)
21+2(η−ν) − 1

×

×
(
Mν,η + c(1− η + ν)2

2− 2(η − ν)

1− 2(η − ν)

) (20)

where we have used
∑∞
j=1

1
j2+2(ν−η) ≤ 2−2(η−ν)

1−2(η−ν) and the term with l = 1 gives

Mν,η =

⎧⎨⎩
16(ln 2)2c(1−η+ν)2

(1+η−ν)2 if η > ν,

22+2(η−ν)c(ν−η)2
(1+η−ν)2 if η ≤ ν

and Pn = Cov [x− x̂T,n, x− x̂T,n]. �
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Example 3.10. Consider the 1D heat equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂
∂tz(x, t) =

∂2

∂x2 z(x, t), x ∈ [0, 1],

z(0, t) = z(1, t) = 0,

z(x, 0) = z0,

dy(t) = ∂
∂xz(0, t) dt+ dw(t)

with state space X = L2(0, 1) and D(A) = H2
0 [0, 1]. Assume z0 ∈ D(A) almost

surely. Now the spectrum of A is {−π2k2} and the corresponding eigenvectors are
ek = sin(πkx). Then it is easy to see that the assumptions of Theorem 3.5 are
satisfied with δ = 2 and γ = 1/2 and thus the theorem implies convergence rate
O(n−1/2) for x̂T,n. Clearly Theorem 3.8 implies convergence rate O(n−1) but we
can do better.

Denoting z =
∑∞
k=1 αkek we have ||z||2D((−A)ν) =

∑∞
k=1 k

4να2
k. For the output it

holds that

|Cz|2 =

∣∣∣∣∣
∞∑
k=1

πkαk

∣∣∣∣∣
2

≤ π

∞∑
k=1

1

k1+ε

∞∑
k=1

k3+εα2
k

from which it can be deduced that C ∈ L(D((−A)ν ),Y)) for ν > 3/4. Now Theo-
rem 3.9 implies convergence rate O(n−3/2+ε) for x̂T,n with ε > 0 — of course, with
a multiplicative constant that tends to infinity as ε→ 0.

4. Discussion

Since the implementation of the discrete time Kalman filter is straightforward,
it is a tempting choice for state estimation for discretized continuous time systems.
As the temporal discretization is refined, the discrete time state estimate converges
pointwise to the continuous time estimate in L2(Ω;X ). In this article, we derived
convergence speed estimates with various assumptions on the system. With infinite
dimensional systems even with bounded observation operator, some smoothness
assumption on the initial state is needed for obtaining any convergence speed es-
timates. This was demonstrated in Example 3.2. Possible additional assumptions
are (i): for the initial state covariance it holds that P0 ∈ L(X ,D(A)); or (ii): for
the initial state it holds that x ∈ D(A) almost surely. In the latter case we obtained
the same convergence speed estimate as for finite dimensional systems.

In the case of unbounded output operator, some additional assumptions were
needed, including a slightly nonstandard assumption on the output operator (as-
sumption (iii) in Thm. 3.5). In the problems arising from PDEs on one dimensional
spatial domains, this is not a big problem but unfortunately with more complicated
systems, finding a suitable γ might be close to a mission impossible. The spectral
asymptotics, on the other hand, is an extensively studied field — so much so that
it has even been a subject of a few books, such as [14] by Levendorskiì and [17] by
Safarov and Vassiliev.

Some of the major topics that would require further work are adding input
noise to the system and accepting infinite dimensional output space. With input
noise, one should at least establish the sufficient “smoothness of the state”. Also,
the technique used here, based on taking into account more and more interme-
diate output process values, would become significantly more complicated. For
what comes to the dimension of the output space in the results of this article, the
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output space dimension q does not appear explicitly in the convergence speed es-
timates, except for Thm. 3.3. However, in the proofs we need an upper bound for∣∣∣∣∣∣(ChPjC∗

h + h
4R

)−1
∣∣∣∣∣∣
L(Y)

and thus, in order to obtain (10), we made a coercivity

assumption R ≥ εI > 0 which excludes infinite dimensional output space since R
is required to be a trace class operator.

Two more topics that are not covered by this article are the long time behaviour
as T →∞, and using some approximate time integration scheme for taking the time
step. When T grows, the error covariance converges under some assumptions on the
observability of the system. When there is no input noise, the limit is 0. Of course,
the observability of the continuous time system does not imply the observability
of the discretized system. In the case where there is input noise affecting the
system, the error covariance limits are obtained as the solutions Pd and Pc of the
corresponding discrete or continuous time algebraic Riccati equations, respectively.
Then it holds that limn→∞ E

(
||x̂nΔt,n − x̂(nΔt)||2X

)
= tr(Pd−Pc) where x̂nΔt,n and

x̂(nΔt) are defined in (2). Finally, further research would be needed to study the
error caused to the state estimate if some numerical time integration scheme is used
for computing the discrete time update, that is, eAΔt is not computed accurately.
A similar problem is addressed in [3] and [23], but they are mainly concerned with
the stability of the resulting filter.

Acknowledgements. The author was financially supported by the Finnish Grad-
uate School in Engineering Mechanics. The author thanks Dr. Jarmo Malinen for
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SPATIAL DISCRETIZATION ERROR IN KALMAN FILTERING
FOR DISCRETE-TIME INFINITE DIMENSIONAL SYSTEMS

ATTE AALTO

Abstract. We derive a reduced-order state estimator for discrete-time infi-
nite dimensional linear systems with finite dimensional Gaussian input and
output noise. This state estimator is the optimal one-step estimate that takes
values in a fixed finite dimensional subspace of the system’s state space —
consider, for example, a Finite Element space. We then derive a Riccati differ-
ence equation for the error covariance and use sensitivity analysis to obtain a
bound for the error of the state estimate due to the state space discretization.

1. Introduction

In this paper, we consider the state estimation problem for infinite dimensional
discrete time linear systems with finite dimensional Gaussian input and output
noise. The objective is to find the optimal one-step state estimate from a given
subspace of the original state space (for example a Finite Element space). We shall
also find a bound for the error due to the spatial discretization to the state estimate
at the infinite time limit.

The dynamics of the system under consideration is given by

(1)

⎧⎪⎨⎪⎩
xk = Axk−1 +Buk,

yk = Cxk + wk,

x0 ∼ N(m,S0)

where xk ∈ X , A ∈ L(X ), B ∈ L(Cq,X ), and C ∈ L(X ,Cm). The state space X is
a separable Hilbert space. The noise processes are assumed to be Gaussian, uk ∼
N(0, U) and wk ∼ N(0, R) where U ∈ Rq×q and R ∈ Rm×m are positive-definite
and symmetric. It is also assumed that u, w, and x0 are mutually independent,
and the noises at different times are independent.

When measurements yj for j = 1, ..., k are known, the state estimate x̂k min-
imizing the conditional expectation E

(
||x̂k − xk||2X

∣∣∣{yj, j = 1, ..., k}
)

is given by
x̂k = E(xk|{yj, j ≤ k}). In the presented Gaussian case, the conditional expecta-
tion x̂k can be computed recursively from x̂k−1 and yk. This recursive scheme is
known as the Kalman filter, originally presented in [12] in the finite dimensional
setting. For infinite dimensional systems, the generalization is straightforward and
it can be done, for example, using the presentation by Bogachev [4: Section 3.10]
or the more explicit presentation [14] by Krug. Let us present a short introduc-
tion. It is well known that linear combinations of Gaussian random variables are

2010 Mathematics Subject Classification. 93E11, 93E25.
Key words and phrases. Kalman filter, infinite dimensional systems, reduced-order filtering,

spatial discretization, optimal estimation, Riccati equation.
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also Gaussian random variables. Further, if
[
h1

h2

]
∼ N

([
m1

m2

]
,

[
P11 P12

P ∗
12 P22

])
where

h1 ∈ X and h2 is finite dimensional, then

(2) E(h1|h2) = m1 + P12P
+
22(h2 −m2)

and

(3) Cov [h1 − E(h1|h2) , h1 − E(h1|h2)] = P11 − P12P
+
22P

∗
12.

Remark that Cov [E(h1|h2) ,E(h1|h2)] = P12P
+
22P

∗
12 so that in fact,

Cov [h1 − E(h1|h2) , h1 − E(h1|h2)](4)
= Cov [h1, h1]− Cov [E(h1|h2) ,E(h1|h2)] .

Applying (2) and (3) to the jointly Gaussian random variable [xk, y1, ..., yk] and
the block matrix inversion formula

(5)
[
F G
GT H

]−1
=

[
F−1+F−1G(H−GTF−1G)−1GTF−1 −F−1G(H−GTF−1G)−1

−(H−GTF−1G)−1GTF−1 (H−GTF−1G)−1

]
to P22 =̂Cov [[y1, ..., yk], [y1, ..., yk]] eventually leads to the full state Kalman filter
equations

(6) x̂k = Ax̂k−1 +K
(F )
k (yk − CAx̂k−1)

where K
(F )
k for k = 1, 2, ... are called Kalman gains, and they are given by K

(F )
k =

P̃
(F )
k C∗(CP̃

(F )
k C∗ +R)−1, and the Riccati difference equation (RDE)

(7)

{
P̃

(F )
k = AP

(F )
k−1A

∗ +BUB∗,
P

(F )
k = P̃

(F )
k − P̃

(F )
k C∗(CP̃

(F )
k C∗ +R)−1CP̃

(F )
k .

Here P (F )
k = Cov [xk − x̂k, xk − x̂k] is the (estimation) error covariance and P̃

(F )
k =

Cov [xk − E(xk|[y1, ..., yk−1]) , xk − E(xk|[y1, ..., yk−1])] is the prediction error co-
variance. The initial values are x̂0 = m and P

(F )
0 = S0. The superscript (F )

refers to full Kalman filter estimate and it is used for later purposes.
Numerical implementation of the Kalman filter to infinite dimensional systems

requires discretization of the state space. If the implementation is then carried out
directly to the discretized system, the result is not optimal. In particular, if the
state estimation is performed online, the restrictions in computing power might
prevent using a very fine mesh for the simulations. In such cases it is beneficial to
take the discretization error into account in the state estimation. The purpose of
this paper is to derive the optimal one-step state estimate that takes values in the
discretized state space, and to analyze the discrepancy between the proposed state
estimate and the full state Kalman filter estimate.

We tackle this task in Section 2 by first fixing the structure of the filter in (8).
In the spirit of Kalman filtering, we require that the kth estimate depends only
on the previous estimate and the current measured output yk. We then find the
expression for a filter with such structure. The rest of the paper is organized as
follows: In Section 3, we derive a Riccati difference equation for the estimation error
covariance for the proposed method. Compared to (7), this equation contains an
additional term due to the discretization. In Section 4, we use sensitivity analysis
for algebraic Riccati equations — developed by Sun in [23] — to determine a bound
for the error due to the discretization at the infinite time limit. In short, it is shown
that when the approximation properties of the subspace improve at some rate as the
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spatial discretization is refined, then the finite dimensional state estimate converges
to the full state Kalman filter estimate at least with the same convergence rate. In
Section 5, the proposed method is implemented to one dimensional wave equation
with damping, and the result is compared with the Kalman filter that does not take
into account the spatial discretization error.

The “engineer’s approach”, i.e., the direct Kalman filter implementation to the
discretized system is studied in [1] by Bensoussan and in [7] by Germani et al. The
latter contains a convergence result for the finite dimensional state estimate (in
continuous time) with a convergence rate estimate. They also show convergence
of the solutions of the corresponding Riccati differential equations in the space
of continuous Hilbert-Schmidt operator-valued functions. A method where the
discretization error is taken into account is proposed by Pikkarainen in [17]. Their
approach is based on keeping track of the discretization error mean and covariance.
Then with certain approximations on the error distributions, they too end up with
a one-step method that is numerically implemented in [11] by Huttunen and Pik-
karainen.

Our method is very closely related to the reduced-order filtering methods that
have been studied since the introduction of the Kalman filter itself; see e.g., [2; 3;
19; 20; 22]. The articles by Bernstein and Hyland, [2; 3] yield a state estimator
similar to ours for continuous time. They obtain algebraic optimality equations
for the error covariance and Kalman gain limits as the time index k → ∞, in
terms of “optimal projections”. Our solution is somewhat more straightforward,
and we obtain the error covariances and Kalman gains for all time steps. A similar
method is developed by Simon in [19] with a more restrictive assumption on the
filter structure. For a more thorough introduction and review on the earliest results
on reduced-order filtering techniques, we refer to [22] by Stubberud and Wismer
and to [20] by Sims.

Infinite dimensional Kalman filter has numerous applications. The practical
application that motivated the paper [17] is the electrical impedance process to-
mography, studied by Seppänen et al. in [18]. Infinite dimensional Kalman filter
implementation to optical tomography problem can be found in [9] by Hiltunen
et al. Quasiperiodic phenomena is studied by Solin and Särkkä in [21] using the
infinite dimensional Kalman filter. They use a weather prediction model and fMRI
brain imaging as example cases. The numerical treatment is done using truncated
eigenbasis approach instead of using FEM as in the example of this article.

Notation. We denote by L(X1,X2) the space of bounded linear operators from X1 to
X2, and L(X ) = L(X ,X ). The subspace of self-adjoint operators in X is denoted
by L∗(X ). The spectrum of an operator is denoted by σ(·). The sigma algebra
generated by a random variable (or random variables) is denoted by S(·). The
Moore-Penrose pseudoinverse of a matrix T is denoted by T+.

The covariance of square integrable random variables x1 ∈ X1 and x2 ∈ X2 is
the operator in L(X2,X1) defined for h ∈ X2 by
Cov [x1, x2]h := E

(
(x1 − E(x1)) 〈x2 − E(x2) , h〉X2

)
.

2. The reduced-order state estimate

Let Πs : X → X be an orthogonal projection from the state space X (a separable,
complex Hilbert space) to an n-dimensional subspace of X (e.g., a finite element
space). Assume we have a coordinate system in C

n associated to this subspace,
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such that the inner product is preserved, and denote by Π : X → Cn the represen-
tation of the projection Πs in this coordinate system. That is, 〈Πsx1,Πsx2〉X =
〈Πx1,Πx2〉Cn for x1, x2 ∈ X . Then it holds that ΠΠ∗ = I ∈ Cn×n and Π∗Π = Πs.

Finding an exact solution to the estimation problem of the finite dimensional Πxk
would require solving the full state Kalman filtering problem and then projecting the
estimate by Π. This, of course, doesn’t make much practical sense. As mentioned
above, we want to find the optimal state estimate x̃k in ΠsX that can be computed
from the previous state estimate x̃k−1 and the current measurement yk. More
precisely, we want to obtain x̃k’s satisfying

(8)

{
x̃0 = Πm,

x̃k = ΠE(xk|x̃k−1, yk) , k ≥ 1,

where xk satisfy (1). One thing to notice here is that in contrast to the full state
filtering, the conditioning is not done over a filtration, because — loosely speaking
— we lose some information when we only take into account the last measurement
and the last estimate of the state projection. Without loss of generality, we may
assume that m = 0 (see Remark 2.1). Note that this also implies E(xk) = 0 and
further, E(x̃k) = 0 and E(yk) = 0 for all k ≥ 1.

We then proceed to find a concrete representation for x̃k. From (8) it can be
inductively deduced that [xk−1, x̃k−1] is Gaussian and from (1), also [xk, x̃k−1, yk] is
Gaussian. The reasoning leading to the full state Kalman filter equations utilizing
equations (2) and (3) together with the block matrix inversion formula (5) can be
generalized for any Gaussian random variable [h1, h2, h3] with h1 ∈ X , and h2 and
h3 finite dimensional, to obtain

E(h1|h2, h3) =E(h1|h2) + Cov [h1 − E(h1|h2) , h3 − E(h3|h2)]×(9)

× Cov [h3 − E(h3|h2) , h3 − E(h3|h2)]
−1

(h3 − E(h3|h2)).

The corresponding equation can be obtained for the covariance operator. The full
state Kalman filter equations (6) and (7) are obtained by applying (9) to h1 = xk,
h2 = [y1, ..., yk−1], and h3 = yk. In what follows, we obtain x̃k by applying (9) to
h1 = xk, h2 = x̃k−1, and h3 = yk.

Since m = 0, there exists an operator Qk−1 ∈ L(Rn,X ) such that

(10) E(xk−1|x̃k−1) = Qk−1x̃k−1

and the (estimation) error covariance

(11) Pk−1 := Cov [xk−1 −Qk−1x̃k−1, xk−1 −Qk−1x̃k−1] .

Using these we can make an orthogonal decomposition of the state

xk−1 = E(xk−1|x̃k−1) + (xk−1 − E(xk−1|x̃k−1)) =: Qk−1x̃k−1 + vk−1

where vk−1 ∼ N
(
0, Pk−1

)
and it is independent of the estimate x̃k−1. Together

with (1), this gives decompositions for the state xk and output yk:

(12)

{
xk = Axk−1 +Buk = A(Qk−1x̃k−1 + vk−1) +Buk,

yk = Cxk + wk = C(A(Qk−1x̃k−1 + vk−1) +Buk) + wk

from which one can deduce E(xk|x̃k−1) = AQk−1x̃k−1 and E(yk|x̃k−1) = CAQk−1x̃k−1.
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Then we need the two covariances in (9). To this end, define the prediction error
covariance for which we get a representation from (12),

(13) P̃k := Cov [xk − E(xk|x̃k−1) , xk − E(xk|x̃k−1)] = APk−1A
∗ +BUB∗.

Using the two equations in (12), we get

Cov [xk − E(xk|x̃k−1) , yk − E(yk|x̃k−1)] = P̃kC
∗

and the covariance of output prediction error from the second equation in (12)

Cov [yk − E(yk|x̃k−1) , yk − E(yk|x̃k−1)] = CP̃kC
∗ +R.

Now we have all the components for obtaining x̃k by (9),

(14) E(xk|x̃k−1, yk) = AQk−1x̃k−1 + P̃kC
∗(CP̃kC

∗+R
)−1︸ ︷︷ ︸

=:Kk

(yk− CAQk−1x̃k−1).

It remains to compute the error covariance Pk defined in (11), and the operator
Qk defined through (10). By (4), Pk is given by

Pk = Sk −QkS̃kQ
∗
k

where Sk = Cov [xk, xk] is the state covariance and S̃k = Cov [x̃k, x̃k] is the state
estimate covariance. The state xk is a linear combination of mutually indepen-
dent Gaussian random variables xk−1 and uk and so Sk can be obtained from the
Lyapunov difference equation

(15) Sk = ASk−1A
∗ +BUB∗

and the first one, S0, is the initial state covariance in (1). Also, by (12),

(16) yk − CAQk−1x̃k−1 = CAvk + CBuk + wk ∼ N
(
0, CP̃kC

∗ +R
)

where vk, uk, and wk are mutually independent and also independent with the
state estimate x̃k−1. Thus, by (14), also S̃k is obtained from a Lyapunov difference
equation,

(17) S̃k = ΠAQk−1S̃k−1Q
∗
k−1A

∗Π∗ +ΠKk

(
CP̃kC

∗ +R
)
(ΠKk)

T

with S̃0 = 0.
By (2), Qk is given by

(18) Qk = Cov [xk, x̃k] S̃−1
k .

The case when S̃k is not invertible is discussed in Remark 2.2. The cross covariance
operator Vk := Cov [xk, x̃k] in (18) can be computed by “anchoring” xk and x̃k to
x̃k−1 using equations (12) and (14) and the fact that Avk−1 +Buk ∼ N

(
0, P̃k

)
,

Cov [xk, x̃k] = AQk−1S̃k−1Q
∗
k−1A

∗Π∗ + P̃kC
∗(CP̃kC

∗ +R
)−1

CP̃kΠ
∗.

It is worth noting here that S̃k = ΠCov [xk, x̃k] implying the intuitive fact, ΠQk = I

in the case that S̃k is invertible.
Let us conclude by presenting some remarks concerning the derivation of the

reduced-order state estimate and then collecting the relevant equations to an algo-
rithm.
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Remark 2.1. The assumption m = 0 does not restrict generality, since we can always
always add ΠAkm to x̃k and subtract CAkm from yk in (12). However, this is how
to make the derivation accurate. In practical implementation, it is reasonable to
just start the state estimate from x̃0 = Πm and then proceed as described.

Remark 2.2. If S̃k is not invertible, it means that R(S̃k), the range of S̃k, does
not cover the whole space Cn. The estimate x̃k lies on R(S̃k) almost surely. Thus
Qk is not determined uniquely in this case. By imposing additional requirements
ΠQk = I and (I −Πs)Qk

∣∣
R(S̃k)⊥

= 0 then Qk is uniquely determined and it is

given by Qk = Q̃k +Π∗(I −ΠQ̃k) = Π∗ + (I −Πs)Q̃k where Q̃k = Cov [xk, x̃k] S̃+
k .

Algorithm 2.3. As with the full state Kalman filter, the following operator-valued
equations can be computed beforehand (offline):

Sk = ASk−1A
∗ +BUB∗,

P̃k = APk−1A
∗ +BUB∗,

Kk = P̃kC
∗(CP̃kC

∗+R
)−1

,

Vk = AQk−1S̃k−1Q
∗
k−1A

∗Π∗ +Kk

(
CP̃kC

∗ +R
)
(ΠKk)

T ,

S̃k = ΠVk,

Qk = Π∗ + (I −Πs)S̃
+
k Vk,

Pk = Sk −QkS̃kQ
∗
k.

The initial values are S0 (given in (1)), P0 = S0, S̃0 = 0, and Q0 = Π∗. The state
estimate is given by

x̃0 = Πm,

x̃k = ΠAQk−1x̃k−1 +ΠKk(yk − CAQk−1x̃k−1).

Practical implementation of the proposed method is discussed in Section 6.1. An
alternative equation for Pk is derived in the following section.

3. The error covariance equation

Motivated by the main theorem of [2], we next seek for a Riccati difference
equation satisfied by the error covariance Pk. This equation will be needed later
for determining a bound for the error in the state estimate due to the spatial

discretization. To this end, define the augmented state x̄k :=

[
xk
x̃k

]
for which we

have dynamic equations[
xk
x̃k

]
=

[
A 0

ΠKkCA Π(A−KkCA)Qk−1

][
xk−1

x̃k−1

]
+

[
B 0

ΠKkCB ΠKk

][
uk
wk

]
=: Ākx̄k−1 + B̄kūk.

The augmented state covariance satisfies the Lyapunov difference equation

(19) S̄k = ĀkS̄k−1Ā
∗
k + B̄kŪ B̄∗

k

where Ū =

[
U 0
0 R

]
. This covariance can be written as a block operator by S̄k =[

Sk Vk
V ∗
k S̃k

]
where Sk and S̃k are the state and state estimate covariances, given in
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(15) and (17), respectively. Now it holds that Qk = VkS̃
−1
k (or Qk = VkS̃

+
k +Π∗(I−

ΠVkS̃
+
k ) if S̃k is not invertible) and thus for the reduced-order error covariance

defined in (11), it holds that Pk = Sk − VkS̃
+
k V

∗
k . Also, for the prediction error

covariance we have P̃k = A(Sk−VkS̃+
k V

∗
k )A

∗+BUB∗ by (13). Using these notations
we get from (19)

Vk = ASk−1A
∗C∗K∗Π∗ +AVk−1S̃

+
k−1V

∗
k−1A

∗(Π−ΠKkC)∗ +BUB∗C∗K∗
kΠ

∗

= P̃kC
∗(CP̃kC

∗ +R)−1CP̃kΠ
∗ +AVk−1S̃

+
k−1V

∗
k−1A

∗Π∗,

and similarly S̃k = ΠVk = V ∗
k Π

∗. Using the state covariance Lyapunov equation
(15) and the equations above and noting that VkS̃+

k V
∗
k = QkV

∗
k = VkQ

∗
k = QkS̃kQ

∗
k,

we see that the error covariance Pk satisfies the Riccati difference equation (RDE)

(20)

⎧⎪⎨⎪⎩
P̃k = APk−1A

∗ +BUB∗,
Pk = P̃k − P̃kC

∗(CP̃kC
∗ +R)−1CP̃k+

+(I −QkΠ)(AVk−1S̃
+
k−1V

∗
k−1A

∗+ P̃kC
∗(CP̃kC

∗ +R)−1CP̃k)(I −QkΠ)
∗.

This equation is posed in L(X ). Note that this is not a complete set of equations,
but the last equation in Algorithm 2.3 can be replaced by the second equation
in (20). Compared to the RDE (7) for the full state Kalman filter, this equation
contains the additional load term in the last line of (20). In the next section we
find an upper bound for the effect of this additional term to the solution at the
infinite time limit but first we need to go through some auxiliary results.

Proposition 3.1. Let S1 and S2 be sigma algebras, such that S1 ⊂ S2 and x an
integrable random variable. Then E(x|S1) = E(E(x|S2) |S1).

If x is quadratically integrable then

Cov [E(x|S1) ,E(x|S1)] ≤ Cov [E(x|S2) ,E(x|S2)] ≤ Cov [x, x] .

Lemma 3.2. Assume that the state covariance Sk defined in (15) satisfies Sk ≤ S
for all k for some trace class operator S ∈ L∗(X ). For the discretization error term
in the RDE (20), it holds that

Mk := (I −QkΠ)(AVk−1S̃
+
k−1V

∗
k−1A

∗+ P̃kC
∗(CP̃kC

∗ +R)−1CP̃k)(I −QkΠ)
∗

≤ (I −Πs)S(I −Πs)
∗ =: M.(21)

Proof. Note that Vk−1S̃
+
k−1V

∗
k−1 = Qk−1S̃k−1Q

∗
k−1. Then by (14) and (16) it can

be seen that

Mk = Cov [(I −QkΠ)E(xk|x̃k−1, yk) , (I −QkΠ)E(xk|x̃k−1, yk)] .

It holds that

QkΠE(xk|x̃k−1, yk) = Qkx̃k = E(xk|x̃k) = E(E(xk|x̃k−1, yk) |x̃k)
where the first equality follows by (8), the second by the definition of Qk, (10), and
the third by Proposition 3.1 and S(x̃k) ⊂ S(x̃k−1, yk) which, in turn, can be seen
from (8).

Thus Qk minimizes

E

(
〈e,E(xk|x̃k−1, yk)− Zx̃k〉2X

)
= E

(
〈e, (I − ZΠ)E(xk|x̃k−1, yk)〉2X

)
= 〈e, (I − ZΠ)Cov [E(xk|x̃k−1, yk) ,E(xk|x̃k−1, yk)] (I − ZΠ)∗e〉X
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over Z ∈ L(Cn,X ) for all e ∈ X . Since Πs = Π∗Π, it holds that

Mk ≤ (I −Πs)Cov [E(xk|x̃k−1, yk) ,E(xk|x̃k−1, yk)] (I −Πs)
∗

≤ (I −Πs)Cov [xk, xk] (I −Πs)
∗ ≤M

where the middle inequality holds by Proposition 3.1. �

Lemma 3.3. Let P (j)
k for j = 1, 2, be the solutions of the RDEs

(22)

{
P̃

(j)
k = AP

(j)
k−1A

∗ +W
(j)
k ,

P
(j)
k = P̃

(j)
k − P̃

(j)
k C∗(CP̃

(j)
k C∗ +R)−1CP̃

(j)
k

where P
(2)
0 ≥ P

(1)
0 ≥ 0 and W

(2)
k ≥W

(1)
k ≥ 0. Then P

(2)
k ≥ P

(1)
k for all k ≥ 0.

This follows from [6: Lemma 3.1] by de Souza in the finite dimensional setting.
The proof is just algebraic manipulation and it holds also in the infinite dimen-
sional setting (if the output is finite dimensional). However, we shall present a
straightforward proof.

Proof. We show P
(2)
1 ≥ P

(1)
1 . For larger k the result follows by induction. Define

the block diagonal covariances in L∗(X 3)

P̃
(1)
B =

[
AP

(1)
0 A∗

W
(1)
1

0

]
and P̃

(2)
B =

[
AP

(2)
0 A∗

W
(1)
1

W
(2)
1 −W (1)

1

]
and CB := [C C C]. Then define

P
(j)
B = P̃

(j)
B − P̃

(j)
B C∗

B(CBP̃
(j)
B C∗

B +R)−1CBP̃
(j)
B for j = 1, 2

P
(×)
B = P̃

(2)
B − P̃

(2)
B C∗

B(CBP̃
(1)
B C∗

B +R)−1CBP̃
(2)
B .

Now P̃
(2)
B ≥ P̃

(1)
B implies P

(2)
B ≥ P

(×)
B . Then P

(1)
B =

[
I
I
0

]
P

(×)
B

[
I
I
0

]
and so

P
(×)
B ≥ P

(1)
B . Now P

(j)
1 = [I I I]P

(j)
B

[
I
I
I

]
and so P

(2)
1 ≥ P

(1)
1 . �

The following lemma is due to Hager and Horowitz, [8]:

Lemma 3.4. Assume that Sk ≤ S for all k for some trace class operator S ∈ L∗(X )

where Sk is defined in (15). Let P (F )
k be the solution of (7) and P

(b)
k be the solution

of (22) with W
(b)
k = W (b) = BUB∗+AMA∗ where M is defined in (21). Assuming

P
(b)
0 = P

(F )
0 = 0, then P

(b/F )
k → P (b/F ) strongly as k → ∞. Also, the limit

operators P (b/F ) ≥ 0 are the unique nonnegative solutions of the discrete time
algebraic Riccati equation (DARE)

(23)

{
P̃ (b/F ) = AP (b/F )A∗ +W (b/F ),

P (b/F ) = P̃ (b/F ) − P̃C∗(CP̃ (b/F )C∗ +R)−1CP̃ (b/F )

where W (F ) = BUB∗.
If σ(A−K(F )CA) ⊂ B(0, ρ) with ρ < 1 where K(F ) is the limit of the full state

Kalman gain, that is

(24) K(F ) = P̃ (F )C∗(CP̃ (F )C∗ +R)−1,

then P
(F )
k → P (F ) strongly, starting from any P

(F )
0 ≥ 0.
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The first part follows from [8: Theorem 1] because P
(j)
k ≤ S, and the second part

from [8: Theorem 3].
Even the weak convergence would suffice for the dominated convergence of trace

class operators:

Lemma 3.5. If P , S, and Pk for k = 0, 1, ... are trace class operators in L∗(X ),
Pk ≤ S for all k, and Pk

w−→ P , then tr(Pk)→ tr(P ).

The proof is rather straightforward after noting that 〈ej , Pkej〉X → 〈ej, P ej〉X as
k →∞, for all j ∈ N where {ej}j∈N is an orthonormal basis for X .

4. Error analysis

Next we use sensitivity analysis for DAREs and the results of the preceding
section to show a bound for the discrepancy E

(
||Qkx̃k − x̂k||2X

)
of the full and

reduced-order state estimates, defined in (6) and (8), respectively. The results
of this section are based on bounding the effect of the perturbation Mk in (21)
caused by the spatial discretization. Such bound is possible if we have additional
information about the smoothness of the state xk. That is, it is assumed that
xk lies in a subspace X1 of X — which is a Hilbert space itself — and that the
projection Πs approximates well the vectors in that subspace, meaning that the
norm ||I −Πs||L(X1,X ) becomes small as the spatial discretization is refined.

We show two theorems — first (Thm. 4.1) is an a priori type estimate on the
convergence rate of E

(
||Qkx̃k − x̂k||2X

)
, and the second (Thm. 4.2) is an a posteriori

estimate of the error E
(
||Qkx̃k − x̂k||2X

)
.

Theorem 4.1. Consider the system (1) and the reduced order state estimator Qkx̃k
derived in Sections 2 and 3. Make the following assumptions:

(i) xk ∈ X1 a.s. for all k where X1 is a Hilbert space that is a vector subspace
of X and supk E

(
||xk||2X1

)
<∞.

(ii) The state covariance Sk defined in (15) converges to the solution of the
Lyapunov equation S = ASA∗ +BUB∗, that is, S =

∑∞
j=0 A

jBUB∗(A∗)j

and Sk ≤ S for all k ≥ 0. Use this S in the definition of M in (21).
(iii) The converged full state Kalman filter is exponentially stable, meaning σ(A−

K(F )CA) ⊂ B(0, ρ) for some ρ < 1 where K(F ) is the Kalman gain of the
converged full state Kalman filter, introduced in (24).

If ||I −Πs||L(X1,X ) is small enough, it holds that

lim sup
k→∞

E

(
||Qkx̃k − x̂k||2X

)
≤ C ||I −Πs||2L(X1,X ) +O

(
||I −Πs||4L(X1,X )

)
where C =

(
1 + L

∣∣∣∣∣∣A−K(F )CA
∣∣∣∣∣∣2
L(X )

)
sup
k

E

(
||xk||2X1

)
and L is defined in Lemma A.1.

Proof. Assume first that the initial state is completely known, that is, S0 = 0. Let
Pk be the error covariance of the reduced order method, satisfying the RDE (20)
and Mk be defined in (21). It is easy to confirm that the shifted covariance P

(a)
k :=

Pk −Mk satisfies the RDE{
P̃

(a)
k = AP

(a)
k−1A

∗ +BUB∗ +AMkA
∗,

P
(a)
k = P̃

(a)
k − P̃

(a)
k C∗(CP̃

(a)
k C∗ +R

)−1
CP̃

(a)
k .
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Then denote by P
(b)
k and P̃

(b)
k the solution of a similar RDE but with the term

AMkA
∗ replaced by AMA∗ where M is the upper bound for Mk, defined in (21).

Finally, let P (F )
k be the error covariance of the full Kalman filter estimate, given in

(7) and x̂k = E(xk|{yj, j ≤ k}) is given in (6).
By computing the trace of both sides of (4), we see that for a Gaussian random

variable [h1, h2] it holds that

E

(
||h1||2X

)
= E

(
||E(h1|h2)||2X

)
+ E

(
||h1 − E(h1|h2)||2X

)
.

Now x̃k depends linearly on [y1, ..., yk] and thus clearly S(x̃k) ⊂ S(y1, ..., yk). By
Proposition 3.1, it holds that Qkx̃k = E(xk|x̃k) = E(x̂k|x̃k). Thus it holds that

E

(
||Qkx̃k − x̂k||2X

)
= E

(
||x̂k||2X

)
− E

(
||Qkx̃k||2X

)
= E

(
||xk||2X

)
− E

(
||Qkx̃k||2X

)
−

(
E

(
||xk||2X

)
− E

(
||x̂k||2X

))
= E

(
||xk −Qkx̃k||2X

)
− E

(
||xk − x̂k||2X

)
= tr

(
P

(a)
k

)
+ tr(Mk)− tr

(
P

(F )
k

)
.

By Lemmas 3.2 and 3.3, P
(F )
k ≤ P

(a)
k ≤ P

(b)
k and thus tr

(
P

(a)
k

) − tr
(
P

(F )
k

) ≤
tr
(
P

(b)
k

) − tr
(
P

(F )
k

)
. By Lemma 3.4, P

(b)
k → P (b) and P

(F )
k → P (F ) strongly

(recall S0 = 0) where P (b) and P (F ) are the solutions of the corresponding DAREs,
that is, equation (23) with W (b) = BUB∗ + AMA∗ and W (F ) = BUB∗. Also,
by Lemma 3.5, tr

(
P

(b)
k

) → tr
(
P (b)

)
and tr

(
P

(F )
k

) → tr
(
P (F )

)
. Denote ΔP :=

P (b) − P (F ) and note that ΔP ∈ L∗(X ) is a positive (semi-)definite trace class
operator. Then an upper bound for the discrepancy is given by

(25) lim sup
k→∞

E

(
||Qkx̃k − x̂k||2X

)
≤ tr(ΔP ) + tr(M).

Equation (30) in Lemma A.2 gives a representation for ΔP . The next step is
to use this equation to find a bound for tr(ΔP ). Because the full Kalman filter is
assumed to be exponentially stable, by Lemmas A.1 and A.2, we have

tr(ΔP ) ≤ tr
(
L−1(E1 + E2 + h1(ΔP ))

)
where L ∈ L(L∗(X )) is defined in Lemma A.1 and E1, E2, and h1(ΔP ) are defined
in Lemma A.2. The term h2(ΔP ) in (30) is excluded here because it is negative
definite (see the discussion after Lemma A.1).

Now we have E1 ≥ 0 and so by Lemma A.1,

tr(L−1E1) ≤ Ltr(E1) ≤ L
∣∣∣∣∣∣A−K(F )CA

∣∣∣∣∣∣2
L(X )

tr(M)

where L is defined in Lemma A.1. From E2 the negative definite part can be
omitted and thus

tr(L−1E2) ≤ L
∣∣∣∣∣∣K(F )C

∣∣∣∣∣∣2
L(X )

tr
(
AMA∗C∗

(
C(P̃ (F )+AMA∗)C∗+R

)−1

CAMA∗
)

≤ L
∣∣∣∣∣∣K(F )C

∣∣∣∣∣∣2
L(X )

||A||4L(X ) ||C||2L(X ,Y) tr
((
C(P̃ (F ) +AMA∗)C∗+R

)−1
)

tr(M)2

≤ L
∣∣∣∣∣∣K(F )C

∣∣∣∣∣∣2
L(X )

||A||4L(X ) ||C||2L(X ,Y) tr
((
CP̃ (F )C∗+R

)−1
)

tr(M)2.
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To get a bound for tr
(
L−1h1(ΔP )

)
, recall the following properties of the operator

trace and the Hilbert-Schmidt norm:

||AB||HS ≤ ||A||L(X ) ||B||HS , ||A||HS ≤ tr(A), for A ∈ L∗(X ), A ≥ 0,

and tr(AB) ≤ ||A||HS ||B||HS .

Using these and (29) yields tr
(
L−1h1(ΔP )

)
≤ L0

(
2
∣∣∣∣∣∣A−K(F )CA

∣∣∣∣∣∣
L(X )

||CA||L(X ,Y) ||ΔK||HS + ||CA||2L(X ,Y) ||ΔK||2HS
)

tr(ΔP )

where L0 is defined in Lemma A.1, ΔK = K(F )−K(b), and K(b) = P̃ (b)C∗(CP̃ (b)C∗+
R)−1. By the last part of Lemma A.2, we have

(26) ||ΔK||HS ≤
(
ĉ1 + ĉ2tr(M)

)
tr(M)

where

ĉ1 =

(
1 +

∣∣∣∣∣∣P̃ (F )
∣∣∣∣∣∣
L(X )

||C||2L(X ,Y)

∣∣∣∣∣∣∣∣(CP̃ (F )C∗ +R
)−1

∣∣∣∣∣∣∣∣
L(Y)

)
×

× ||C||L(X ,Y) ||A||2L(X )

∣∣∣∣∣∣∣∣(CP̃ (F )C∗ +R
)−1

∣∣∣∣∣∣∣∣
L(Y)

and ĉ2 = ||A||4L(X ) ||C||3L(X ,Y)

∣∣∣∣∣∣∣∣(CP̃ (F )C∗ +R
)−1

∣∣∣∣∣∣∣∣2
L(Y)

.

Collecting these inequalities we finally get

(27) tr(ΔP ) ≤ atr(M) + btr(M)2

1− (
c1tr(M) + c2tr(M)2 + c3tr(M)3 + c4tr(M)4

)
where

a = L
∣∣∣∣∣∣A−K(F )CA

∣∣∣∣∣∣2
L(X )

,

b = L
∣∣∣∣∣∣K(F )C

∣∣∣∣∣∣2
L(X )

||A||4L(X) ||C||2L(X ,Y) tr
((

CP̃ (F )C∗ +R
)−1

)
,

c1 = 2L0

∣∣∣∣∣∣A−K(F )CA
∣∣∣∣∣∣
L(X )

||CA||L(X ,Y) ĉ1,

c2 = 2L0

∣∣∣∣∣∣A−K(F )CA
∣∣∣∣∣∣
L(X )

||CA||L(X ,Y) ĉ2 + L0 ||CA||2L(X ,Y) ĉ
2
1,

c3 = 2L0 ||CA||2L(X ,Y) ĉ1ĉ2,

c4 = L0 ||CA||2L(X ,Y) ĉ
2
2.

To complete the proof under the assumption S0 = 0, use (25), (27), and note
that by the definition of M in (21) and S in assumption (ii),

tr(M) = sup
k

E

(
||(I −Πs)xk||2X

)
≤ ||I −Πs||2L(X1,X ) sup

k
E

(
||xk||2X1

)
.

In case S0 > 0, the convergence P
(b)
k → P (b) has to be established. Denote

Φ = A−K(F )CA and ΔΦ = ΔKCA. Pick λ ∈ C from the resolvent set of Φ. Then
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using the Woodbury formula, we get(
λ− (A−K(b)CA)

)−1

= (λ− Φ−ΔΦ)
−1

=(λ− Φ)−1 + (λ− Φ)−1ΔΦ
(
I − (λ− Φ)−1ΔΦ

)−1
(λ − Φ)−1

and
∣∣∣∣(λ− Φ)−1ΔΦ

∣∣∣∣
L(X )

≤ ||ΔΦ||L(X )

|λ| − ρ
where ρ < 1 is the spectral radius of Φ. The invertibility of λ − (A −K(b)CA) is
then guaranteed if ||ΔKCA||L(X ) < |λ| − ρ which implies that the spectral radius
of A−K(b)CA is at most ρ+ ||ΔKCA||L(X ). So when tr(M) is small enough, then

also A−K(b)CA is exponentially stable and P
(b)
k → P (b) strongly. �

The assumption (iii) in Theorem 4.1 is very difficult to check. Also, it is hard
to say what it means that “ ||I −Πs||L(X1,X ) is small enough” which is related to the
denominator in Eq. (27) and the exponential stability of A−K(b)CA. Consequently,
this theorem should be considered as an a priori convergence speed estimate when
the discretization is refined, that is, when ||I −Πs||L(X1,X ) → 0.

However, if one has already computed the operators Qk and Kk and they have
converged to Q∞ and K∞ and it has turned out that σ(A−K∞CA) ⊂ B(0, ρ) for
some ρ < 1, then by the same argument as in Theorem 4.1 we get the following
improved error estimate:

Theorem 4.2. Make the assumptions (i) and (ii) in Theorem 4.1. Assume also
that the operators Kk, Qk, and Mk related to the reduced order filter have converged
to K∞, Q∞ and M∞, respectively, and σ(A −K∞CA) ⊂ B(0, ρ) for some ρ < 1.
Then

lim sup
k→∞

E

(
||Qkx̃k − x̂k||2X

)
≤ C1 ||I −Πs||2L(X1,X ) + C2 ||I −Πs||4L(X1,X )

where C1 =

(
1 + L̃

∣∣∣∣∣∣A−K(F )CA
∣∣∣∣∣∣2
L(X )

)
sup
k

E

(
||xk||2X1

)
,

C2 = L̃
∣∣∣∣∣∣K(F )C

∣∣∣∣∣∣2
L(X )

||A||4L(X ) ||C||2L(X ,Y) tr
((
CP̃ (F )C∗+R

)−1
)(

sup
k

E

(
||xk||2X1

)2)
,

and L̃ is defined in Lemma A.1.

Proof. The covariances P (a)
k and P̃

(a)
k defined in the proof of Theorem 4.1 converge

to P (a) and P̃ (a) that are the solution of the DARE{
P̃ (a) = AP (a)A∗ +BUB∗ + AM∞A∗,
P (a) = P̃ (a) − P̃ (a)C∗(CP̃ (a)C∗ +R

)−1
CP̃ (a).

Now bounding ΔP := P (a) −P (F ) by using the alternative expression (31) for ΔP
given in Lemma A.2 and otherwise proceeding as in the proof of Theorem 4.1 leads
to the result. Note that

K∞ = lim
k→∞

P̃kC
∗(CP̃kC

∗ +R)−1

but since P̃
(a)
k = P̃k for all k, it holds that K∞ = P̃ (a)C∗(CP̃ (a)C∗ +R)−1. �



SPATIAL DISCRETIZATION IN KALMAN FILTERING 13

Remark 4.3. The coefficients C1 and C2 in the above theorem depend on K(F ) and
P̃ (F ) which is not desirable. It is possible to bound these coefficients from above
without computing them. Firstly, we have∣∣∣∣∣∣A−K(F )CA

∣∣∣∣∣∣2
L(X )

≤ 2 ||A−K∞CA||2L(X ) + 2 ||CA||2L(X ,Y) ||ΔK||2L(Y,X ) .

Now ||ΔK||L(Y,X ) ≤ ||ΔK||HS for which we have (26),
∣∣∣∣∣∣P̃ (F )

∣∣∣∣∣∣
L(X )

≤
∣∣∣∣∣∣P̃ (a)

∣∣∣∣∣∣
L(X )

,∣∣∣∣∣∣∣∣(CP̃ (F )C∗ +R
)−1

∣∣∣∣∣∣∣∣
L(Y)

≤ 1
min(eig(R)) , and tr

((
CP̃ (F )C∗ +R

)−1
)
≤ tr(R−1).

5. Numerical example

In this section, Algorithm 2.3 is implemented to the temporally discretized 1D
wave equation with damping,

(28)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2

∂t2 z(x, t) = −ε ∂∂tz(x, t) + ∂2

∂x2 z(x, t) +Bu(t), x ∈ [0, 1],

z(0, t) = z(1, t) = 0,

y(t) = Cz(x, t) + w(t),

z(x, 0) = z0

where u ∈ R3 and w ∈ R2 are the formal derivatives of Brownian motions with
incremental covariances U and R, respectively. The initial state is a Gaussian
random variable z0 ∼ N(0, P0), and u, w, and z0 are mutually independent. The
input operator B is a multiplication operator but we define its structure only on
the discrete-time level. The output operator C ∈ L(X ,R2) is given by Cz =[
〈c1, z〉L2(0,1) , 〈c2, z〉L2(0,1)

]T
where c1(x) =

1.4
(x+1).7 and c2(x) =

1
(2−x).3 .

The equation is transformed to a first order differential equation with respect

to the time variable by introducing the augmented state
[
z
v

]
where v = ∂

∂tz is the

velocity variable. The natural augmented state space is X = H1
0 [0, 1] × L2(0, 1).

In H1
0 [0, 1] := {z ∈ H1[0, 1] | z(0) = z(1) = 0} we use the norm ||z||2H1

0 [0,1]
:=∫ 1

0 z′(x)2dx. The equation is then temporally discretized using the implicit Euler
method with time step Δt. The state space discretization is carried out by Finite
Element Method using piecewise linear elements on two meshes on the interval [0, 1].
The first one is a finer mesh with Nf equispaced discretization points. The fine
mesh solution is regarded as the true solution. The second, coarse mesh consists of
Nc discretization points, also equally spaced with discretization intervals of length
hc = 1/(Nc + 1). It is required that the function space consisting of the piecewise
linear elements on the coarse mesh is a subspace of the fine mesh space. This is
satisfied when Nf +1 = k(Nc+1) for some integer k. The coarse mesh space is the
range of Π. In the augmented state of the discretized system, the input operator

is Bd =

[
0 0 0

b1(x) b2(x) b3(x)

]
where b1(x) = (1 − x) sin(πx), b2(x) = 7x2(1 − x),

and b3(x) = sin(6πx)2/x. The input noise covariance for the discrete time system
is Ud = ΔtU .

The solution of (28) actually has additional smoothness, namely [z v]T ∈ X1 =(
H1

0 [0, 1] ∩H2[0, 1]
) × H1

0 [0, 1] almost surely — note that Bd ∈ L(R3,X1). It is
well known that the piecewise linear elements approximate H2-functions in one
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Table 1. Left: Simulation parameters. Right: Squared error av-
erages over 500 simulations.

Symbol value
Δt .01
U diag(1 , 1 , .25)
R diag(.3 , .15)
Nf 65
Nc 5
ε .4

Method F A C
Position .6122 .6126 .6352
Velocity .8150 .8154 .9294

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3
z
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A
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−11.5

−11

−10.5
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−9.5
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−7.5

−7

−6.5

log(h)

lo
g(
di
ff)

Figure 1. Left: The true solution and estimates given by
the three filtering methods. Right: The convergence of
limk→∞ E

(
||Qx̃k − x̂k||2X

)
as hc → 0 is shown with the x-markers.

The solid line is a fitted regression line. The plot is in logarithmic
scale.

dimension so that ||z −Πsz||H1[0,1] ≤ C2hc ||z||H2[0,1] and H1-functions so that
||v −Πsv||L2(0,1) ≤ C1hc ||v||H1 [0,1], see for example [15: Section 5.1].

Fig. 1 (left) shows the state z(x, t) together with the three different state esti-
mates in one simulation. The full state Kalman filter estimate (F) and the reduced-
order state estimate (A) cannot be distinguished from each other. The third state
estimate (C) is computed in the coarse mesh without taking the discretization error
into account. The simulation parameters are shown in Table 1 (left). The spectral
radius was .996 for both the full state Kalman filter and the reduced-order filter.
We are interested in the stationary Kalman filter and so the simulations were first
run 2000 steps to get rid of initial transitions. The expected (squared) errors of the
different methods are shown in Table 1 (right) separately for the position variable
z and the velocity variable v.

As hc → 0, the expected squared difference between the reduced-order estimate
and full state Kalman filter estimate, limk→∞ E

(
||Qkx̃k − x̂k||2X

)
, tends to zero.

Fig. 1 (right) illustrates this convergence in the example case. Regression analy-
sis gives limk→∞ E

(
||Qkx̃k − x̂k||2X

)
≈ 86.8h7.06 whereas Theorem 4.1 gives O(h2)

convergence rate.
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6. Conclusions and remarks

When the system at hand is infinite dimensional (or its dimension is very large),
one needs to make some finite (or lower) dimensional approximation of the sys-
tem in order to be able to actually compute something. For what comes to the
Gaussian state estimation problem, the spatial discretization introduces a bias in
the Kalman filter but the result can be improved by taking that error into account
when determining the Kalman gain.

In this paper, we derived the optimal one-step state estimator x̃k for an infinite
dimensional system that takes values in a pre-defined finite dimensional subspace
ΠsX of the system’s state space X . The presented method also gives an operator Qk

that gives E(xk|x̃k) = Qkx̃k. This operator can be used as a sort of post-processor
of the obtained state estimate.

Sections 3 and 4 were devoted to finding a bound for the error caused by the
discretization. The error measure is the L2(Ω,X )-distance between the reduced-
order state estimate Qkx̃k and the full state Kalman filter estimate x̂k, that is,
E

(
||Qkx̃k − x̂k||2X

)
. It was found that this distance converges to zero as the ap-

proximation abilities of the projection Πs improve.
A numerical example on temporally discretized 1D wave equation was presented

in Section 5. It was noted that the presented method worked well even with fairly
low level of discretization. The spatial discretization was done using piecewise
linear hat functions whose approximating properties were noted to converge with
rate O(h) when the discretization is refined. By Theorem 4.1 this would imply
convergence rate E

(
||Qkx̃k − x̂k||2X

)
= O(h2) for the reduced-order state estimate.

However, numerical simulations showed that this convergence was actually of order
O(h7) in the example case.

6.1. On practical implementation. Even though all the computations needed
for the update of the state estimate are carried out in the finite dimensional subspace
ΠsX in the presented method, the offline computations needed for determining the
Kalman gains Kk and the operators Qk are still formally carried out in the infi-
nite dimensional X . In practice, there are very few cases where this can be done
analytically, and even then it is hardly worth the effort. A practical approach is
proposed in the example, namely introducing two computational meshes for the
problem at hand — a fine mesh and a coarse mesh. The fine mesh discretization
is then regarded as the true system and Kk and Qk are computed using this dis-
cretization. This mesh should be as fine as reasonably possible. The online state
estimation is then carried out in the coarse mesh. Of course, the criterion for this
mesh is that the time evolution of the state estimator has to be solvable with the
available computing power in time before the next measurement arrives.

In practical implementation of the presented method, one weak point is the
computation of Qk which in theory requires computation of the (pseudo)inverse of
the n× n matrix S̃k, see (18). As noted in Remark 2.2, when S̃k is not invertible
then Qk = Π∗ + (I − Πs)VkS̃

+
k . This equation for Qk could also be used if the

pseudoinverse is not computed accurately, but by using some approximative or
regularizing scheme. Then the part that Qk maps to ΠsX is readily taken care
of and from VkS̃

+
k one can compute an approximation to a couple of the most

important dimensions in the null space of Π.
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We also remark that there is no guarantee that Qk and Kk would converge.
Further, even if they do converge, there are no algebraic equations for obtaining
the limits directly. Thus, the only way to obtain them is to iterate the recursive
equation sufficiently many times. However, consider the case that we are given
Πxk and we want to recover xk. Then (assuming E(xk) = 0) the optimal solution
is given by E(xk|Πxk) =: Q̂kΠxk where

Q̂k = Π∗ + (I −Πs)SkΠ
∗(ΠSkΠ∗)+

where Sk = Cov [xk, xk] is given by (15). Then we have xk = Q̂kΠxk + vk where
vk ∼ N(0, V̂k) where

V̂k = (I −Πs)Sk(I −Πs)
∗ − (I −Πs)SkΠ

∗(ΠSkΠ∗)+ΠSk(I −Πs)
∗.

Now Sk converges and the limit S∞ can be obtained as the solution of the Lyapunov
equation S∞ = AS∞A∗ +BUB∗. Of course, the error vk is correlated but making
the (false) assumption that it is not, leads to an approximate reduced order error
covariance (in converged form){

P̃ = ΠAQ̂∞PQ̂∗
∞A∗Π∗ +ΠBUB∗Π∗ +ΠAV̂∞A∗Π∗,

P = P̃ − P̃ Q̂∗
∞C∗(CQ̂∞P̃ Q̂∗

∞C∗ +R)−1CQ̂∞P̃ .

It was found that using this approximative state estimate worked reasonably well
in the presented example. With the parameters on the left in Table 1, the error∣∣∣∣∣∣Q̂∞x̃k − xk

∣∣∣∣∣∣2
X

was in average over 500 simulations .6148 for the position variable
and .8179 for the velocity variable (cf. the right panel of Table 1).

6.2. Further work. Let us end the paper by briefly discussing topics that would
require further work. An immediate question is whether a similar result can be
obtained for the Kalman–Bucy filter, that is, for continuous time systems. Here
the discrete time systems were studied for technical convenience but, in principle,
there should not be any reasons why it couldn’t be done. For example the results
of [2], [3] and [7] were obtained in the continuous time setting. In particular [7]
might give useful tools for treating this problem.

The dual problem to the Gaussian state estimation problem is the optimal control
problem for linear systems with quadratic cost functions. A natural question is
whether the results of this paper can be translated to that problem. For example
Mohammadi et al. use truncated eigenbasis approach to approximately solve the
algebraic Riccati equation arising from optimal control of a diffusion-convection-
reaction in [16].

One topic that was not given much attention in this paper is the optimality of
the assumptions on the system. It is well known that the classical Kalman filter
might work just fine even though the underlying system is not stable. We, on
the other hand, used many times the input stability of the system, i.e., the state
covariance is uniformly bounded by some trace class operator Sk ≤ S. Also, we had
to state as an assumption that the full state Kalman filter is exponentially stable,
that is, σ(A− K̂CA) ⊂ B(0, ρ) for some ρ < 1. Relaxing this assumption would be
desirable since for example strong (that is, asymptotical) stability of the full state
filter is proved in [10: Theorem 4.2] — although under a controllability assumption
that would exclude finite dimensional control.
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Appendix A. Auxiliary results

Lemma A.1. Define the operator L ∈ L(L∗(X )) by

LW := W − (A−K(F )CA)W (A −K(F )CA)∗

where σ(A −K(F )CA) ⊂ B(0, ρ) for ρ < 1. This operator has the following prop-
erties:

(i) L is boundedly invertible.
(ii) If LW = X, then X ≥ 0 implies W ≥ 0.
(iii) There exists a constant L > 0 s.t. tr(L−1X) ≤ Ltr(X) for all positive

definite trace class operators X ∈ L∗(X ). Denote by L the smallest possible
constant. Denote L0 :=

∑∞
j=0

∣∣∣∣(A−K(F )CA)2j
∣∣∣∣
L(X )

. We have L ≤ L0 <
∞.

Define also L̃W := W − (A−K∞CA)W (A−K∞CA)∗ where K∞ is the converged
gain of the reduced order filter (if it converges) and denote by L̃ the corresponding
trace bound for L̃−1.

Proof. (i): The inverse of L is given by

(29) L−1X =

∞∑
j=0

(A−K(F )CA)jX((A−K(F )CA)∗)j .

By Gelfand’s formula (see [13: Theorem 7.5-5]), the sum converges in operator
topology because σ(A−K(F )CA) ⊂ B(0, ρ) for some ρ < 1.

(ii): Assume that X ∈ L∗(X ) is positive semidefinite. From (29) it is easy to see
that L−1X is positive semidefinite. Clearly also if X is negative semidefinite then
W is negative semidefinite.

(iii): If X ∈ L∗(X ) is a positive definite trace class operator and T ∈ L(X ) then
tr(TXT ∗) ≤ ||T ||2L(X ) tr(X). This together with (29) imply (iii). �

If LW = X+−X− where X+, X− ≥ 0 then W = W+−W− where LW± = X± and
W+,W− ≥ 0. Of course tr(W ) ≤ tr(W+) ≤ Ltr(X+). Thus, if the right hand side
can be represented as a sum of a positive definite and a negative definite part, then
only the positive definite part needs to be taken into account when computing an
upper bound for the trace of the solution.

Lemma A.2. The perturbation ΔP in the proof of Theorem 4.1 satisfies

ΔP = (A−K(F )CA)ΔP (A −K(F )CA)∗ + E1 + E2 + h1(ΔP ) + h2(ΔP )

(30) = L−1 (E1 + E2 + h1(ΔP ) + h2(ΔP ))

where
E1 = (I −K(F )C)AMA∗(I −K(F )C)∗,

E2 = −(I−K(F )C)AMA∗C∗
(
C(P̃ (F ) +AMA∗)C∗ +R

)−1

CAMA∗(I−K(F )C)∗

+K(F )CAMA∗C∗
(
C(P̃ (F ) + AMA∗)C∗ +R

)−1

CAMA∗C∗K(F )∗,
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h1(ΔP ) = ΔKCAΔP (A−K(F )CA)∗+(A−K(F )CA)ΔP (ΔKCA)∗+ΔKCAΔP (ΔKCA)∗

where ΔK = K(F ) −K(b), and

h2(ΔP ) =− (A−K(b)CA)ΔPA∗C∗
(
C(P̃ (F )+AMA∗+AΔPA∗)C∗+R

)−1

×
× CAΔP (A −K(b)CA)∗.

Alternatively, the equation (30) can be written as

(31) ΔP = (A−K(b)CA)ΔP (A −K(b)CA)∗ + E1 + E2 + h2(ΔP ).

The perturbation of the Kalman gain is given by

ΔK =

(
(P̃ (F ) +AMA∗)C∗

(
C(P̃ (F ) +AMA∗)C∗ +R

)−1

C − I

)
×

×AMA∗C∗(CP̃ (F )C∗ +R)−1.

For a proof, see [23: Lemma 2.1]. There everything is finite-dimensional but the
proof of this Lemma is based on just algebraic manipulation and it holds also in the
infinite-dimensional setting. Note that the matrix C(P̃ (F ) +M +AΔPA∗)C∗ +R

is invertible because C(P̃ (F ) + M + AΔPA∗)C∗ ≥ 0 and R > 0. In the proof of
[23: Lemma 2.1], some additional assumptions on the perturbations is needed to
guarantee the invertibility of the corresponding matrix (denoted by C̃ there). To
get (31), note that

h1(ΔP ) = (A−K(b)CA)ΔP (A−K(b)CA)∗ − (A−K(F )CA)ΔP (A −K(F )CA)∗.

For the last part, see in particular [23: Eq. (A.8)].
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Abstract

We prove the unique solvability, passivity/conservativity and some
regularity results of two mathematical models for acoustic wave propa-
gation in curved, variable diameter tubular structures of finite length.
The first of the models is the generalised Webster’s model that includes
dissipation and curvature of the 1D waveguide. The second model
is the scattering passive, boundary controlled wave equation on 3D
waveguides. The two models are treated in an unified fashion so that
the results on the wave equation reduce to the corresponding results
of approximating Webster’s model at the limit of vanishing waveguide
intersection.

Keywords. Wave propagation, tubular domain, wave equation, Webster’s
horn model, passivity, regularity.

AMS classification. Primary 35L05, secondary 35L20, 93C20, 47N70.

1 Introduction

This is the second part of the three part mathematical study on acoustic
wave propagation in a narrow, tubular 3D domain Ω ⊂ R

3. The other parts
of the work are [25, 26]. Our current interest in wave guide dynamics stems
from modelling of acoustics of speech production; see, e.g., [1, 3, 13] and the
references therein.

The main purpose of the present paper is to give a rigorous treatment of
solvability and energy passivity/conservativity questions of the two models
for wave propagations that are discussed in detail in [26]: these are (i)
the boundary controlled wave equation on a tubular domain, and (ii) the
generalised Webster’s horn model that approximates the wave equation in
low frequencies. The a posteriori error estimate for the Webster’s model is
ultimately given in [25], and it is in an essential part based on Theorems 4.1
and 5.1 below.
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The secondary purpose of this paper is to introduce the new notion of
conservative majoration for passive boundary control systems. The under-
lying systems theory idea is simple and easy to explain: it is to be expected
on engineering and physical grounds that adding energy dissipation to a
forward time solvable (i.e., internally well-posed, typically even conserva-
tive) system cannot make the system ill-posed, e.g., unsolvable in forward
time direction. Thus, it should be enough to treat mathematically only the
lossless conservative case that “majorates” all models where dissipation is
included as far as we are not reversing the arrow of time. That this intuition
holds true for many types of energy dissipation is proved in Theorem 3.1 for
boundary dissipation and in Theorem 3.2 for a class of dissipation terms for
PDE’s. These theorems are given in the general context of boundary nodes
that have been discussed in, e.g., [29, 30, 42].

Early work concerning Webster’s equation can be found in [5, 40, 41, 47].
Webster’s original work [47] was published in 1919, but the model itself has
a longer history spanning over 200 years and starting from the works of
D. Bernoulli, Euler, and Lagrange. More modern approaches is provided by
[20, 21, 31, 32, 34, 33]. Webster’s horn model is a special case of the wave
equation in a non-homogenous medium in Ω ⊂ R

n, n ≥ 1, which has been
treated with various boundary and interior point control actions in, e.g., [9,
Appendix 2], [18, Section 2], [22], [37, Section 6], and, in particular, [19,
Section 7] containing also historical remarks. There exists a rich literature
on the damped wave equation in 1D spatial domain, and instead of trying
to give here a comprehensive account we refer to the numerous references
given [10].

The boundary of Ω ⊂ R
n, n ≥ 2, is smooth or C2 in the works cited

above, which excludes polygons (for n = 2) or their higher dimensional
counterparts such as the tubular structures discussed here. From systems
theory point of view, this is a serious restriction since it is obviously impos-
sible to connect finitely many, disjoint, smooth domains seamlessly to each
other without leaving holes whose interior is non-empty. The generality of
this article makes it possible to interconnect 3D wave equation systems on
geometrically compatible elements Ωj ⊂ R

3 to form aggregated systems on
∪jΩj in the same way as described in [2, Section 5] for Webster’s horn model.

Theorems 4.1 and 5.1 treat the questions of unique solvability, passivity,
and regularity of the two wave propagation models in the exactly same form
as these results are required in companion papers [25, 26]. The strict passiv-
ity (i.e., the case α > 0) in Theorems 4.1 and 5.1 could be proved without
resorting to Theorems 3.1 and 3.2 as they both concern single PDE’s with
simple dissipation models. However, the direct approach becomes techni-
cally quite cumbersome if we have more complicated aggregated systems
to treat (not all of which need be defined by PDE’s), and combinations of
various dissipation models are involved. An example of such systems is pro-
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γ(·) t(s)

b(s)n(s)

Γ(0)

Γ(1)

Γ(s)

Figure 1: The Frenet frame of the planar centreline for a tubular domain Ω,
represented by some of its intersection surfaces Γ(s) for s ∈ [0, 1]. The wall
Γ ⊂ ∂Ω is not shown, and the global coordinate system is detailed in [26,
Section 2].

vided by transmission graphs as introduced in [2] where the general passive
case is treated by reducing it to the conservative case and arguing as in
Theorem 3.2. In the context of transmission graphs, see also the literature
on port-Hamiltonian systems [4, 16, 46]. That the conservative majora-
tion method cannot be used for all possible dissipation terms is shown in
Section 6 by an example involving Kelvin–Voigt structural damping.

Let us return to wave propagation models on a tubular domain Ω refer-
ring to Fig. 1. The cross sections Γ(s) of Ω are normal to the planar curve
γ = γ(s) that serves as the centreline of Ω as shown in Fig. 1. We denote by
R(s) and A(s) := πR(s)2 the radius and the area of Γ(s), respectively. We
call Γ the wall, and the circular plates Γ(0), Γ(1) the ends of the tube Ω.
The boundary of Ω satisfies ∂Ω = Γ∪Γ(0)∪Γ(1). Without loss of generality,
the parameter s ≥ 0 can be regarded as the arc length of γ, measured from
the control/observation surface Γ(0) of the tube.

As is well known, acoustic wave propagation in Ω can be modelled by
the wave equation for the velocity potential φ as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φtt(r, t) = c2Δφ(r, t) for r ∈ Ω and t ∈ R
+,

c∂φ∂ν (r, t) + φt(r, t) = 2
√

c
ρA(0) u(r, t) for r ∈ Γ(0) and t ∈ R

+,

φ(r, t) = 0 for r ∈ Γ(1) and t ∈ R
+,

α∂φ
∂t (r, t) +

∂φ
∂ν (r, t) = 0 for r ∈ Γ, and t ∈ R

+, and

φ(r, 0) = φ0(r), ρφt(r, 0) = p0(r) for r ∈ Ω

(1.1)

with the observation defined by

c
∂φ

∂ν
(r, t)− φt(r, t) = 2

√
c

ρA(0) y(r, t) for r ∈ Γ(0) and t ∈ R
+, (1.2)

where ν denotes the unit normal vector on ∂Ω, c is the sound speed, ρ is the
density of the medium, and α ≥ 0 is a parameter associated to boundary
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dissipation. The functions u and y are control and observation signals in

scattering form, and the normalisation constant 2
√

c
ρA(0) takes care of their

physical dimension which is power per area. Solvability, stability, and energy
questions for the wave equation in various geometrical domains Ω ⊂ R

n have
a huge literature, and it is not possible to give a historically accurate review
here. The wave equation is a prototypal example of a linear hyperbolic
PDE whose classical mathematical treatment can be found, e.g., in [23,
Chapter 5], and the underlying physics is explained well in [8, Chapter 9].
In the operator and mathematical system theory context, it has been given
as an example (in various variations) in [27, 30, 43, 44, 48] and elsewhere.
For applications in speech research, see, e.g., [3, 13, 26] and the references
therein.

One computationally and analytically simpler wave propagation model
is the generalised Webster’s horn model for the same tubular domain Ω
that is now represented by the area function A(·) introduced above. To
review this model in its generalised form, let us recall some notions from
[26]. To take into account the curvature κ(s) of the centreline γ(·) of Ω, we
adjust the sound speed c in (1.1) by defining c(s) := cΣ(s) where Σ(s) :=(
1 + 1

4η(s)
2
)−1/2

is the sound speed correction factor, and η(s) := R(s)κ(s)
is the curvature ratio at s ∈ [0, 1]. We also need take into consideration the
deformation of the outer wall Γ by defining the stretching factor W (s) :=
R(s)

√
R′(s)2 + (η(s)− 1)2; see [26, Eq. (2.8)]. It is a standing assumption

that η(s) < 1 to prevent the tube Ω from folding on itself locally.
Following [26], the generalised Webster’s horn model for the velocity

potential ψ = ψ(s, t) is now given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψtt =
c(s)2

A(s)
∂
∂s

(
A(s)∂ψ∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ
∂t

for s ∈ (0, 1) and t ∈ R
+,

−cψs(0, t) + ψt(0, t) = 2
√

c
ρA(0) ũ(t) for t ∈ R

+,

ψ(1, t) = 0 for t ∈ R
+, and

ψ(s, 0) = ψ0(s), ρψt(s, 0) = π0(s) for s ∈ (0, 1),

(1.3)

and the observation ỹ is defined by

− cψs(0, t)− ψt(0, t) = 2

√
c

ρA(0)
ỹ(t) for t ∈ R

+. (1.4)

The constants c, ρ, α are same as in (1.1). The input and output signals ũ
and ỹ of (1.3)–(1.4) correspond to u and y in (1.1)–(1.2) by spatial averaging
over the control surface Γ(0). Hence, their physical dimension is power per
area as well. Based on [25, 26], the solution ψ of (1.3) approximates the
averages

φ̄(s, t) :=
1

A(s)

∫
Γ(s)

φ dA for s ∈ (0, 1) and t ≥ 0 (1.5)
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of φ in (1.1) when φ is regular enough. Note that the dissipative boundary
condition α∂φ

∂ν (r, t)+
∂φ
∂ν (r, t) = 0 in (1.1) has been replaced by the dissipation

term 2παW (s)A(s)−1c(s)2 ∂ψ∂t (with the same parameter α) in (1.3). For
classical work on Webster’s horn model, see [20, 31, 40] and in particular
[33] where numerous references can be found.

We show in Theorem 5.1 that the wave equation model (1.1)–(1.2) is
uniquely solvable in both directions of time, and the solution satisfies an
energy inequality if α > 0. By Corollary 5.2, the model has the same
properties for α = 0 but then the energy inequality is replaced by an equality,
and the model is even time-flow invertible. In all cases, the solution φ is
observed to have the regularity required for the treatment given in [26] if
the input u is twice continuously differentiable. The generalised Webster’s
horn model (1.3)–(1.4) is treated in a similar manner in Theorem 4.1.

This paper is organised as follows: Background on boundary control
systems is given in Section 2. Conservative majoration of passive boundary
control systems is treated in Section 3. The Webster’s horn model and the
wave equation are treated in Sections 4 and 5 respectively. Some immediate
extensions of these results are given in Section 6. Because of the lack of ac-
cessible, complete, and sufficiently general references, the paper is completed
by a self-contained appendix on Sobolev spaces, boundary trace operators,
Green’s identity, and Poincaré inequality for special Lipschitz domains that
are required in the rigorous analysis of typical wave guide geometries.

2 On infinite dimensional systems

Linear boundary control systems such as (1.1) and (1.3) are treated as dy-
namical systems that can be described by operator differential equations of
the form

u(t) = Gz(t), ż(t) = Lz(t), with the initial condition z(0) = z0
(2.1)

and the observation equation

y(t) = Kz(t), (2.2)

where t ∈ R
+ denotes time. The signals in (2.1), (2.2) are as follows: u is

the input, y is the output, and the state trajectory is z.

Cauchy problems

To make (2.1) properly solvable for all twice differentiable u and compatible
initial states z0, the axioms of an internally well-posed boundary node should
be satisfied:

5



Definition 2.1. A triple of operators Ξ = (G,L,K) is an internally well-
posed boundary node on the Hilbert spaces (U ,X ,Y) if the following condi-
tions are satisfied:

(i) G, L, and K are linear operators with the same domain Z ⊂ X ;

(ii)
[
G
L
K

]
is a closed operator from X into U × X × Y with domain Z;

(iii) G is surjective, and ker (G) is dense in X ; and

(iv) L
∣∣
ker(G)

(understood as an unbounded operator in X with domain ker (G))

generates a strongly continuous semigroup on X .

If, in addition, L is a closed operator on X with domain Z, we say that the
boundary node Ξ is strong.

The history of abstract boundary control system dates back to [7, 38, 39].
The phrase “internally well-posed” refers to condition (iv) of Definition 2.1,
and it is a much weaker property than well-posedness of systems in the
sense of [42]. It plainly means that the boundary node defines an evolution
equation that is uniquely solvable in forward time direction. Boundary nodes
that are not necessarily internally well-posed are characterised by the weaker
requirement in place of (iv): α−L

∣∣
ker(G)

is a bijection from ker (G) onto X
for some α ∈ C.

We call U the input space, X the state space, Y the output space, Z the
solution space, G the input boundary operator, L the interior operator, and
K the output boundary operator. The operator A := L

∣∣
ker(G)

is called the

semigroup generator if Ξ is internally well-posed, and otherwise it is known

as the main operator of Ξ. Because
[
G L K

]T
is a closed operator, we

can give its domain the Hilbert space structure by the graph norm

‖z‖2Z = ‖z‖2X + ‖Lz‖2X + ‖Gz‖2U + ‖Kz‖2Y . (2.3)

If the node is strong, we have an equivalent norm for Z given by omitting
the last two terms in (2.3). If Ξ = (G,L,K) is an internally well-posed
boundary node, then (2.1) has a unique “smooth” solution:

Proposition 2.2. Assume that Ξ = (G,L,K) is an internally well-posed
boundary node. For all z0 ∈ X and u ∈ C2(R+;U) with Gz0 = u(0) the
equations (2.1) have a unique solution z ∈ C1(R+;X ) ∩ C(R+;Z). Hence,
the output y ∈ C(R+;Y) is well defined by the equation (2.2).

Indeed, this is [29, Lemma 2.6].

6



Energy balances

Now that we have treated the solvability of the dynamical equations, it
remains to consider energy notions. We say that the internally well-posed
boundary node Ξ = (G,L,K) is (scattering) passive if all smooth solutions
of (2.1) satisfy

d

dt
‖z(t)‖2X + ‖y(t)‖2Y ≤ ‖u(t)‖2U for all t ∈ R

+ (2.4)

with y given by (2.2). All such systems are well-posed in the sense of [42];
see also [45]. We say that Ξ is (scattering) energy preserving if (2.4) holds
as an equality.

Many boundary nodes arising from hyperbolic PDE’s (such as (1.1)–(1.2)
and (1.3)–(1.4)) have the property that they remain boundary nodes if we (i)
change the sign of L (i.e., reverse the direction of time); and (ii) interchange
the roles of K and G (i.e., reverse the flow direction). Such boundary nodes
are called time-flow invertible, and we write Ξ← = (K,−L,G) for the time-
flow inverse of Ξ. There are many equivalent definitions of conservativity in
the literature, and we choose here the following:

Definition 2.3. An internally well-posed boundary node Ξ is (scattering)
conservative if it is time-flow invertible, and both Ξ itself and the time-flow
inverse Ξ← are (scattering) energy preserving.1

For system nodes that have been introduced in [42, 28], an equivalent
definition for conservativity is to require that both S and its dual node Sd are
energy preserving. This is the straightforward generalisation from the finite-
dimensional theory but it is not very practical when dealing with boundary
control. For conservative systems, the time-flow inverse and the dual system
coincide, and we have then, in particular, A∗ = −L∣∣

ker(K)
if A = L

∣∣
ker(G)

.

For details, see [29, Theorems 1.7 and 1.9].
It is possible to check economically, without directly using Definition 2.1,

that the triple Ξ = (G,L,K) is a dissipative/conservative boundary node:

Proposition 2.4. Let Ξ = (G,L,K) be a triple of linear operators with a
common domain Z ⊂ X , and ranges in the Hilbert spaces U , X , and Y,
respectively. Then Ξ is a passive boundary node on (U ,X ,Y) if and only if
the following conditions hold:

(i) We have the Green–Lagrange inequality

2Re 〈z, Lz〉X + ‖Kz‖2Y ≤ ‖Gz‖2U for all z ∈ Z; (2.5)

1The words “energy preserving” can be replaced by “passive” without changing the
class of systems one obtains.
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(ii) GZ = U and (β − L)ker (G) = X for some β ∈ C
+ (hence, for all

β ∈ C
+).

Similarly, Ξ is a conservative boundary node on (U ,X ,Y) if and only if
(ii) above holds together with the additional conditions:

(iii) We have the Green–Lagrange identity

2Re 〈z, Lz〉X + ‖Kz‖2Y = ‖Gz‖2U for all z ∈ Z. (2.6)

(iv) KZ = Y and (γ + L)ker (K) = X for some γ ∈ C
+ (hence, for all

γ ∈ C
+).

This is a slight modification of [30, Theorem 2.5]. See also [29, Proposi-
tion 2.5]. The abstract boundary spaces as discussed in [11] are essentially
(impedance) conservative strong nodes as explained in [30, Section 5].

3 Conservative majorants

In some applications, the dissipative character of a linear dynamical system
is often due to a distinct part of the model such as a term or a boundary
condition imposed on the defining PDE. If this part is completely removed
from the model, the resulting more simple system is conservative and, in
particular, internally well-posed. We call it a conservative majorant of the
original dissipative system.

Intuition from engineering and physics hints that increasing dissipation
should make the system “better behaved” and not spoil the internal well-
posedness.2 The following Theorems 3.1 and 3.2 apply to many boundary
control systems. However, they are written for passive majorants since the
proofs remain the same, and this way the results can be applied successively
to systems having both boundary dissipation and dissipative terms.

Theorem 3.1. Let Ξ̃ = (
[
G
G̃

]
, L,

[
K
K̃

]
) be a scattering passive boundary

node on Hilbert spaces (U ⊕ Ũ ,X ,Y ⊕ Ỹ) with solution space Z̃. Then Ξ :=
(G

∣∣
Z , L

∣∣
Z ,K

∣∣
Z) is a scattering passive boundary node on (U ,X ,Y) with

the solution space Z := ker
(
G̃
)
. Both Ξ̃ and Ξ have the same semigroup

generators, equalling L
∣∣
ker(G)∩ker(G̃). If Ξ̃ is a strong node, so is Ξ.

Proof. The Green–Lagrange inequality holds for Ξ since for z ∈ ker
(
G̃
)
we

have ‖Gz‖U = ‖[G
G̃

]
z‖U⊕Ũ , and hence we get by the passivity of Ξ̃

2Re 〈z, Lz〉X − ‖Gz‖2U ≤ −‖
[
Kz
K̃z

]‖2Y⊕Ỹ ≤ −‖Kz‖2Y .
2The dissipativity or even the internal well-posedness of the time-flow inverted system

is, if course, destroyed since adding dissipation creates the “arrow of time”.
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The surjectivity GZ = U follows from U ⊕ {0} ⊂ U ⊕ Ũ =
[
G
G̃

]Z and

Z = ker
(
G̃
)
. Since (β − L)ker

(
G
∣∣
Z
)
= (β − L)

∣∣
ker(G̃)ker (G) = (β −

L)
(
ker (G) ∩ ker

(
G̃
))

= (β − L)ker
([

G
G̃

])
= X , the passivity of Ξ follows

by Proposition 2.4.
Suppose that L is closed (i.e., Ξ̃ is strong) and that Z̃ ⊃ Z � zj → z in X

is such that Lzj → x in X as j →∞. Because L is closed, z ∈ dom (L) = Z̃
and Lz = x. Thus, ‖zj − z‖2Z := ‖zj − z‖2X + ‖L(zj − z)‖2X → 0. Because

G̃ ∈ L(Z; Ũ) by applying (2.3) on Ξ̃, the space Z = ker
(
G̃
)
is closed in Z̃

and thus z ∈ Z. We have now shown that L
∣∣
Z is closed with dom

(
L
∣∣
Z
)
=

Z.
The restriction of the original solution space to ker

(
G̃
)
in Theorem 3.1

is a functional analytic description of boundary dissipation of a particular
kind. If the original scattering passive Ξ̃ is translated to an impedance
passive boundary node by the external Cayley-transform (see [30, Defini-

tion 3.1]), then the abstract boundary condition by restriction to ker
(
G̃
)

can be understood as a termination to an ideally resistive element as de-
picted in [30, Fig. 1].

Theorem 3.2. Let Ξ = (G,L,K) be a scattering passive boundary node
on Hilbert spaces (U ,X ,Y) with solution space Z and X1 = ker (G) with
the norm ‖z‖X1 = ‖(1− L)z‖X . Let H be a dissipative operator on X with
Z ⊂ dom (H).3 Denote the two assumptions as follows:

(i) There is a > 0 and 0 ≤ b < 1 such that ‖Hz‖X ≤ a‖z‖X + b‖Lz‖X for
all z ∈ ker (G).

(ii) There is a Hilbert space X̃ such that X1 ⊂ X̃ ⊂ dom (H), the inclusion
X1 ⊂ X̃ is compact and H

∣∣
X̃ ∈ L(X̃ ;X ).

If either (i) or (ii) holds, then ΞH := (G,L +H,K) is a scattering passive
boundary node. We have dom (A) = dom (AH) where A = L

∣∣
ker(G)

and

AH = (L+H)
∣∣
ker(G)

are the semigroup generators of Ξ and ΞH , respectively.

If the node Ξ is strong and H ∈ L(X ) (i.e., b = 0 in assumption (i)), then
ΞH is a strong boundary node as well.

Both the assumptions (i) and (ii) hold if H ∈ L(X ) and X1 ⊂ X with a
compact inclusion. This is the case in [2, Section 5] in the context of an
impedance passive system. The compactness property is typically a con-
sequence of the Rellich–Kondrachov theorem [6, Theorem 1, p. 144] for
boundary nodes defined by PDE’s on bounded domains. In many applica-
tions such as Theorem 4.1 below, the operator H is even self-adjoint. We

3This means that H : dom (H) ⊂ X → X is an operator satisfying Z ⊂ dom (H) and
Re 〈z,Hz〉X ≤ 0 for all z ∈ Z.
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give an example of the 1D wave equation with Kelvin–Voigt damping in
Section 6 where Theorem 3.2 cannot be applied.

Proof. By using assumption (i): This argument is motivated by [14, The-
orem 2.7 on p. 501]. Let us first show that AH := A + H

∣∣
ker(G)

with

dom (AH) = ker (G) generates a contraction semigroup on X where A =
L
∣∣
ker(G)

generates the contraction semigroup of Ξ as usual. As a first step,

we establish the inequality ‖H(s−A)−1‖L(X ) < 1 for all real s large enough.
Let β > 0 be arbitrary. For all s > β and z ∈ X we have

‖H(s−A)−1z‖X ≤a‖(s−A)−1z‖X + b‖A(s−A)−1z‖X
≤(a+ βb)‖(s−A)−1z‖X

+
b

s− β

∥∥∥∥∥
(

1

s− β
− (A− β)−1

)−1
z

∥∥∥∥∥
X

(3.1)

since

−A(s−A)−1 =
1

s− β

(
1

s− β
− (A− β)−1

)−1
− β(s−A)−1.

Since A is a maximally dissipative operator on X , we have for all z =
(A− β)x ∈ X with x ∈ dom (A)

Re
〈
(A− β)−1z, z

〉
X =Re

〈
(A− β)−1(A− β)x, (A− β)x

〉
X

=Re 〈x, (A− β)x〉X
=Re 〈x,Ax〉X − β‖x‖2X ≤ 0.

Thus, the operator (A− β)−1 is dissipative, and it is maximally so because
(A− β)−1 ∈ L(X ).

Because (A − β)−1 generates a C0 contraction semigroup on X, the
Hille–Yoshida generator theorem gives the resolvent estimate

1

s− β

∥∥∥∥∥
(

1

s− β
− (A− β)−1

)−1∥∥∥∥∥
L(X )

≤ 1

for s > β > 0. Similarly, ‖(s−A)−1‖L(X ) ≤ 1/s for s > 0. These together
with (3.1) give

‖H(s−A)−1z‖X
‖z‖X ≤ a+ βb

s
+ b < 1 for all s >

a+ βb

1− b
.

Because β > 0 was arbitrary, we get ‖H(s−A)−1‖L(X ) < 1 for all s > a
1−b .

We conclude that (a/(1− b),∞) ⊂ ρ(AH) and

(s−AH)−1 = (s−A)−1(I −H(s−A)−1)−1 (3.2)
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where dom (AH) = dom (A) = ker (G). In particular, we have shown that
(2a/(1 − b) − L − H)ker (G) = X (that GZ = U holds, follows because
Ξ itself is a boundary node with the same input boundary operator G).
Since the Green–Lagrange inequality (2.5) holds by the passivity of Ξ and
Re 〈z,Hz〉X ≤ 0 by assumption, we conclude that (2.5) holds with L + H
in place of L, too. Thus ΞH is a scattering passive boundary node by
Proposition 2.4.

By using assumption (ii): As in the first part of this proof, it is enough to
prove that ρ(AH)∩C+ 	= ∅ by verifying (3.2). Because (s−A)−1 ∈ L(X ;X1),
X1 ⊂ X̃ is compact, and H

∣∣
X̃ ∈ L(X̃ ;X ), we conclude that H(s − A)−1 ∈

L(X ) is a compact operator for all s ∈ C+. If there is a s > 0 such that
1 /∈ σ(H(s − A)−1) ⊂ σp(H(s − A)−1) ∪ {0}, then (3.2) holds, s ∈ ρ(AH),
and ΞH is a passive boundary node as argued in the first part of the proof.
For contradiction, assume that 1 ∈ σp(H(s0 − A)−1) for some s0 > 0. This
implies AHx0 = s0x0 for some x0 ∈ dom (AH), and hence

Re 〈AHx0, x0〉X = s0‖x0‖2X > 0

which contradicts the dissipativity of AH = A+H
∣∣
ker(G)

. Thus (3.2) holds

and dom (A) = dom (AH). The final claim about strongness of ΞH holds
because perturbations of closed operators by bounded operators are closed.

The perturbation H in Theorem 3.2 is a densely defined dissipative op-
erator on X . As such, it has a maximally dissipative (closed) extension

H̃ : dom
(
H̃
)
⊂ X → X satisfying H̃∗ ⊂ H∗, and the adjoint H̃∗ is max-

imally dissipative as well. Without loss of generality we may assume that

H = H̃ in Theorem 3.2. Furthermore, it is possible to use X̃ = dom
(
H̃
)

equipped with the graph norm ‖z‖2
dom(H̃)

= ‖z‖2X + ‖H̃z‖2X in assumption

(ii), and it only remains to check whether X1 ⊂ dom
(
H̃
)
compactly.

Let us consider the adjoint semigroup of the passive boundary node
ΞH = (G,L+H,K), majorated by the conservative node Ξ = (G,L,K). The
adjoint semigroup is generated by the maximally dissipative operator A∗H
where AH = (L+H)

∣∣
ker(G)

is maximally dissipative under the assumptions

of Theorem 3.2.

Proposition 3.3. Let Ξ = (G,L,K) be a scattering conservative bound-
ary node on Hilbert spaces (U ,X ,Y) with solution space Z. Let H be a
dissipative operator on X with Z ⊂ dom (H). Assume that either of the
assumptions (i) or (ii) of Theorem 3.2 holds, and let the extension H̃ be
defined as above.

(i) If ker (K) ⊂ dom
(
H̃∗

)
, then (−L+ H̃∗)

∣∣
ker(K)

⊂ A∗H .
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(ii) If Ξ is time-flow invertible and Z ⊂ dom
(
H̃∗

)
, then Ξ←

H̃∗ := (K,−L+

H̃∗, G) is an internally well-posed boundary node if and only if (−L+
H̃∗)

∣∣
ker(K)

= A∗H .

(iii) If Ξ is conservative and Z ⊂ dom
(
H̃∗

)
, then Ξ←

H̃∗ is a passive bound-

ary node if and only if (−L+ H̃∗)
∣∣
ker(K)

= A∗H .

If Ξ = (G,L,K) is conservative, so is its time-flow inverse Ξ← = (K,−L,G)
by Definition 2.3. In this case, it may be possible to use Theorem 3.2 to
conclude that Ξ←

H̃∗ is a passive boundary node as well. If both ΞH and Ξ←
H̃∗

are passive, then they cannot be time-flow inverses of each other unless both
nodes are, in fact, conservative; i.e., H = H̃∗ = 0 on Z.
Proof. It is easy to see that A∗+T ∗ ⊂ (A+T )∗ holds for operators A, T on X
with dom (A)∩dom (T ) dense in X . Applying this on A = L

∣∣
ker(G)

and T :=

H̃
∣∣
ker(G)

we get on ker (K) the inclusion −L∣∣
ker(K)

+
(
H̃
∣∣
ker(G)

)∗ ⊂ A∗H . Here

we used A∗ = −L∣∣
ker(K)

which holds because Ξ = (G,L,K) is a conservative

boundary node whose dual system (with semigroup generator A∗) coincides
with the time-flow inverse Ξ← = (K,−L,G). Since ker (K) ⊂ dom

(
H̃∗

)
has been assumed, it follows that

(
H̃
∣∣
ker(G)

)∗
z = H̃∗z for all z ∈ ker (K),

and claim (i) now follows.
The “only if” part of claims (ii) and (iii): By the internal well-posedness

of Ξ←
H̃∗ , its main operator (−L+H̃∗)

∣∣
ker(K)

generates a C0 semigroup, and its

resolvent set contains some right half plane by the Hille–Yoshida theorem.
By claim (i) and the fact that A∗H is (even maximally) dissipative, it follows

that (−L+H̃∗)
∣∣
ker(K)

is dissipative. But then (−L+H̃∗)
∣∣
ker(K)

is maximally

dissipative, and the converse inclusion A∗H ⊂ (−L+ H̃∗)
∣∣
ker(K)

follows.

The “if” part of claim (ii): The operator (−L + H̃∗)
∣∣
ker(K)

generates a

contraction semigroup on X because it equals by assumption A∗H where AH

itself is a generator of a contraction semigroup by Theorem 3.2.

Equip the Hilbert space dom
(
H̃∗

)
with the graph norm of the closed

operator H̃∗. Since Z ⊂ dom
(
H̃∗

)
has been assumed, and both Z and

dom
(
H̃∗

)
are continuously embedded in X , the inclusion Z ⊂ dom

(
H̃∗

)
is

continuous, too. Now H̃∗∣∣
Z ∈ L(Z;X ) follows from H̃∗ ∈ L(dom

(
H̃∗

)
;X ).

Since now −L + H̃∗ ∈ L(Z;X ), it follows that Ξ←
H̃∗ is an internally well-

posed boundary node by [29, Proposition 2.5]. (You could also argue by
verifying Definition 2.1(ii) directly.)

The “if” part of claim (iii): The “if” part of claim (ii) gives the in-
ternal well-posedness of Ξ←

H̃∗ . To show passivity, only the Green–Lagrange
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inequality 2Re 〈z, (−L+ H̃∗)z〉X ≤ ‖Kz‖2Y − ‖Gz‖2U is needed. This follows

from (2.6) (by the conservativity of Ξ←) and the dissipativity of H̃∗ with

Z ⊂ dom
(
H̃∗

)
(since H̃ is maximally dissipative).

4 Generalised Webster’s model for wave guides

As proved in [26], we arrive (under some mild technical assumptions on Ω as
explained in [26, Section 3]) to the following equations for the approximate
spatial averages of solutions of (5.1):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψtt =
c(s)2

A(s)
∂
∂s

(
A(s)∂ψ∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ
∂t

for s ∈ (0, 1) and t ∈ R
+,

−c(0)ψs(0, t) + ψt(0, t) = 2
√

c(0)
ρA(0) ũ(t) for t ∈ R

+,

ψ(1, t) = 0 for t ∈ R
+, and

ψ(s, 0) = ψ0(s), ρψt(s, 0) = π0(s) for s ∈ (0, 1),

(4.1)

and the observation equation averages to

− c(0)ψs(0, t)− ψt(0, t) = 2

√
c(0)

ρA(0)
ỹ(t) for t ∈ R

+. (4.2)

The notation has been introduced in Section 1. Analogously with the
wave equation, the solution ψ is called Webster’s velocity potential. In
[25, Section 3] we add a load function f(s, t) to obtain the PDE ψtt =
c(s)2

A(s)
∂
∂s

(
A(s)∂ψ∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ
∂t + f(s, t) because the argument there is

based on the feed-forward connection detailed in [26, Fig. 1]. Only the
boundary control input is considered here, and it can be treated using bound-
ary nodes.

We assume that the sound speed correction factor Σ(s) and the area
function A(s) are continuously differentiable for s ∈ [0, 1], and that the
estimates

0 < min
s∈[0,1]

A(s) ≤ max
s∈[0,1]

A(s) <∞ and 0 < min
s∈[0,1]

c(s) ≤ max
s∈[0,1]

c(s) <∞
(4.3)

hold. These are natural assumptions recalling the geometry of the tubular
domain Ω. Define the operators

W :=
1

A(s)

∂

∂s

(
A(s)

∂

∂s

)
and D := −2πW (s)

A(s)
. (4.4)

The operatorD should be understood as a multiplication operator on L2(0, 1)
by the strictly negative function −2πW (·)A(·)−1. Then the first of the equa-
tions in (4.1) can be cast into first order form by using the rule

ψtt = c(s)2 (Wψ + αDψt) =̂
d

dt

[
ψ
π

]
=

[
0 ρ−1

ρc(s)2W αc(s)2D

] [
ψ
π

]
.
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Henceforth, let

LW :=

[
0 ρ−1

ρc(s)2W 0

]
: ZW → XW and HW :=

[
0 0
0 c(s)2D

]
: XW → XW

where the Hilbert spaces are given by

ZW :=
(
H1
{1}(0, 1) ∩H2(0, 1)

)
×H1

{1}(0, 1), XW := H1
{1}(0, 1)× L2(0, 1)

where H1
{1}(0, 1) :=

{
f ∈ H1(0, 1) : f(1) = 0

}
.

Clearly we have HW ∈ L(XW ), H∗
W = HW , and this operator is negative in

the sense that 〈HW [ z1z2 ] , [
z1
z2 ]〉XW

= −2π ∫ 1
0 |z2(s)|2W (s)c(s)2A(s)−1 ds ≤ 0.

So, the operator αHW for α > 0 satisfies assumption (i) of Theorem 3.2 with
b = 0 and also assumption (ii) of the same theorem with X̃ = X .

The Hilbert spaces ZW and XW are equipped with the norms

‖[ z1z2 ]‖2ZW
:= ‖z1‖2H2(0,1) + ‖z2‖2H1(0,1) and

‖[ z1z2 ]‖2H1(0,1)×L2(0,1) := ‖z1‖2H1(0,1) + ‖z2‖2L2(0,1),

respectively. We will use the energy norm on XW , which for any ρ > 0 is
defined by

‖ [ z1z2 ] ‖2XW
:=

1

2

(
ρ

∫ 1

0

∣∣z′1(s)∣∣2A(s) ds+
1

ρc2

∫ 1

0
|z2(s)|2A(s)Σ(s)−2 ds

)
.

(4.5)
This is an equivalent norm for XW because the conditions (4.3) hold and√
2‖z1‖L2(0,1) ≤ ‖z′1‖L2(0,1) for all z1 ∈ H1

{1}(0, 1). To see that the Poincaré

inequality holds in H1
{1}(0, 1), note that for smooth functions z with z(1) =

0, one has from the fundamental theorem of calculus that

|z(s)| =
∣∣∣∣∫ 1

s
z′(t) dt

∣∣∣∣ ≤ (1− s)1/2‖z′‖L2(0,1).

From this, we proceed by squaring and integrating with respect to s, and
then passing to general Sobolev functions by approximation.

We define UW := C with the absolute value norm ‖u0‖UW := |u0|. The
endpoint control and observation functionals GW : ZW → UW and KW :
ZW → UW are defined by

GW [ z1z2 ] :=
1

2

√
A(0)

ρc(0)

(−ρc(0)z′1(0) + z2(0)
)

and

KW [ z1z2 ] :=
1

2

√
A(0)

ρc(0)

(−ρc(0)z′1(0)− z2(0)
)
.
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Now the generalised Webster’s horn model (4.1)–(4.2) for the state z(t) =[
ψ(t)
π(t)

]
takes the form⎧⎨⎩

d
dt

[
ψ(t)
π(t)

]
= (LW + αHW )

[
ψ(t)
π(t)

]
,

ũ(t) = GW

[
ψ(t)
π(t)

]
,

(4.6)

and
ỹ(t) = KW

[
ψ(t)
π(t)

]
(4.7)

for all t ∈ R
+. The initial conditions are

[
ψ(0)
π(0)

]
=

[
ψ0
π0

]
. The state variable

π = ρψt has the dimension of pressure, as for the wave equation.
The impedance passive version of the following Theorem 4.1 is given in

[2, Theorem 5.1], and it would be possible to deduce parts of Theorem 4.1
from that result using the external Cayley transform [30, Definition 3.1].
Here we give a direct proof instead.

Theorem 4.1. Let the operators LW , HW , GW , KW , and spaces ZW , XW ,
UW be defined as above. Let

[
ψ0
π0

] ∈ ZW and ũ ∈ C2(R+;C) such that
the compatibility condition GW

[
ψ0
π0

]
= ũ(0) holds. Then for all α ≥ 0 the

following holds:

(i) The triple Ξ
(W )
α := (GW , LW + αHW ,KW ) is a scattering passive,

strong boundary node on Hilbert spaces (UW ,XW ,UW ).

The semigroup generator AW,α = (LW + αHW )
∣∣
ker(GW )

of Ξ
(W )
α sat-

isfies A∗W,α = (−LW + αHW )
∣∣
ker(KW )

and 0 ∈ ρ(AW,α) ∩ ρ(A∗W,α).

(ii) The equations in (4.6) have a unique solution [ ψπ ] ∈ C1(R+;XW ) ∩
C(R+;ZW ). Hence we can define ỹ ∈ C(R+;C) by equation (4.7).

(iii) The solution of (4.6) satisfies the energy dissipation inequality

d

dt
‖
[
ψ(t)
π(t)

]
‖2XW

≤ |ũ(t)|2 − |ỹ(t)|2 , t ∈ R
+. (4.8)

Moreover, Ξ
(W )
0 is a conservative boundary node, and (4.8) holds then as an

equality.

Under the assumptions of this proposition, we have ψ ∈ C(R+;H2(0, 1)) ∩
C1(R+;H1(0, 1)) ∩ C2(R+;L2(0, 1)).

Proof. Claim (i): By Theorem 3.2, it is enough to show the conservative
case α = 0. Let us first verify the that the Green–Lagrange identity

2Re 〈[ z1z2 ] , LW [ z1z2 ]〉XW
+ |KW [ z1z2 ]|2 = |GW [ z1z2 ]|2 (4.9)
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holds for all [ z1z2 ] ∈ ZW . By partial integration, we get

2Re 〈[ z1z2 ] , LW [ z1z2 ]〉XW
= −A(0)Re

(
z′1(0)z2(0)

)
.

Now (4.9) follows since |GW [ z1z2 ]|2 − |KW [ z1z2 ]|2 = −A(0)Re
(
z′1(0)z2(0)

)
just as in equations (5.14) – (5.15).

It is trivial that GWZW = KWZW = UW since dimUW = 1 and neither
of the operators GW and KW vanishes. We prove next that LW maps
ker (GW ) bijectively onto XW . Now, [ z1z2 ] ∈ ker (GW ) and [ w1

w2 ] ∈ XW satisfy
LW [ z1z2 ] = [w1

w2 ] if and only if z2 = ρw1 and

∂

∂s

(
A(·)∂z1

∂s

)
=

A(·)w2

ρc(·)2 , z1(1) = 0, z′1(0) =
w1(0)

c(0)
.

Since this equation has always a unique solution z1 ∈ H2(0, 1) for any w1 ∈
H1
{1}(0, 1) and w2 ∈ L2(0, 1), it follows that LWker (GW ) = XW and 0 ∈

ρ(AW,0) where AW,0 = LW

∣∣
ker(GW )

is the semigroup generator of Ξ
(W )
0 . We

conclude by Proposition 2.4 that Ξ
(W )
0 is a conservative boundary node as

claimed. That Ξ
(W )
α is passive for α > 0 with semigroup generator AW,α =

(LW + αHW )
∣∣
ker(GW )

follows by Theorem 3.2.

Because H∗
W = HW ∈ L(X ) is dissipative, we may apply Theorem 3.2

again to the time-flow inverted, conservative node
(
Ξ
(W )
0

)←
= (KW ,−LW , GW )

to conclude that the boundary node (KW ,−LW + αH∗
W , GW ) is passive as

well. Claim (iii) of Proposition 3.3 implies thatA∗W,α = (−LW + αHW )
∣∣
ker(KW )

.

Let us argue next that 0 ∈ ρ(AW,α)∩ρ(A∗W,α) for α > 0. Because AW,α is
a compact resolvent operator, it is enough to exclude 0 ∈ σp(AW,α). Suppose
AW,αz0 = 0, giving Re 〈AW,0z0, z0〉X+Re 〈αHW z0, z0〉X = Re 〈AW,αz0, z0〉X =
0. Thus

Re 〈AW,0z0, z0〉X = αRe 〈−HW z0, z0〉X = α‖(−HW )1/2z0‖2X = 0

by the dissipativity of both AW,0 and HW , and the fact that −HW is a
self-adjoint nonnegative operator. Thus z0 ∈ ker (HW ) and hence AW,0z0 =
(AW,0 + αHW )z0 = AW,αz0 = 0. Because 0 ∈ ρ(AW,0) has already been
shown, we conclude that z0 = 0.

The node Ξ
(W )
0 is strong (i.e., LW is closed with dom (LW ) = ZW ) since

LW = L∗∗W and L∗W = −LW

∣∣
dom(L∗

W ) where

dom (L∗W ) =
{
[ w1
w2 ] ∈ H1

{1}(0, 1) ∩H2(0, 1)×H1
0 (0, 1) : ∂w1

∂s (0) = 0
}

which is dense in XW and satisfies dom (L∗W ) ⊂ dom (LW ). That Ξ
(W )
α is

strong for α > 0 follows from HW ∈ L(X ) as explained in Theorem 3.2.
Claims (ii) and (iii) follow from Proposition 2.2 and Eq. (2.4).
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5 Passive wave equation on wave guides

Define the tubular domain Ω ⊂ R
3 and its boundary components Γ, Γ(0),

and Γ(1) as in Section 1. Each of the sets Γ, Γ(0), and Γ(1) are smooth
manifolds but ∂Ω = Γ ∪ Γ(0) ∪ Γ(1) is only Lipschitz. Other relevant prop-
erties of Ω and ∂Ω are listed in (i) – (iii) of Appendix A where we also make
rigorous sense of the Sobolev spaces, boundary trace mappings, Poincaré
inequality, and the Green’s identity for such domains.

Following [26, Section 3], we consider the linear dynamical system de-
scribed by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φtt(r, t) = c2Δφ(r, t) for r ∈ Ω and t ∈ R
+,

c∂φ∂ν (r, t) + φt(r, t) = 2
√

c
ρA(0) u(r, t) for r ∈ Γ(0) and t ∈ R

+,

φ(r, t) = 0 for r ∈ Γ(1) and t ∈ R
+,

∂φ
∂ν (r, t) + αφt(r, t) = 0 for r ∈ Γ, and t ∈ R

+, and

φ(r, 0) = φ0(r), ρφt(r, 0) = p0(r) for r ∈ Ω,

(5.1)

together with the observation y defined by

c
∂φ

∂ν
(r, t)− φt(r, t) = 2

√
c

ρA(0) y(r, t) for r ∈ Γ(0) and t ∈ R
+. (5.2)

This model describes acoustics of a cavity Ω that has an open end at Γ(1)
and an energy dissipating wall Γ. The solution φ is the velocity potential
as its gradient is the perturbation velocity field of the acoustic waves. The
boundary control and observation on surface Γ(0) (whose area is A(0)) are
both of scattering type. The speed of sound is denoted by c > 0. The
constants α ≥ 0 and ρ > 0 have physical meaning but we refer to [26] for
details. Note that if α = 0, we have the Neumann boundary condition
modelling a hard, sound reflecting boundary on Γ. Our purpose is to show
that (5.1)–(5.2) defines a passive boundary node (conservative, if α = 0 by
a slightly different argument in Corollary 5.2) by using Theorem 3.1 with
the aid of the additional signals ũ := 1√

α
∂φ
∂ν +

√
αφt (that will be grounded)

and ỹ := 1√
α
∂φ
∂ν −

√
αφt (that will be disregarded) on the wall Γ.

The boundedness of the Dirichlet trace implies that the space

H1
Γ(1)(Ω) :=

{
f ∈ H1(Ω) : f

∣∣
Γ(1)

= 0
}
. (5.3)

is a closed subspace of H1(Ω). Define

Z̃ ′ := {f ∈ H1
Γ(1)(Ω) : Δf ∈ L2(Ω),

∂f

∂ν

∣∣
Γ(0)∪Γ ∈ L2(Γ(0) ∪ Γ)} (5.4)

with the norm ‖f‖2Z̃′ = ‖f‖2H1(Ω)+‖Δf‖2L2(Ω)+‖∂f∂ν
∣∣
Γ(0)∪Γ‖2L2(Γ(0)∪Γ). Then
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the operator

∂

∂ν

∣∣
Γ′ : f 
→ ∂f

∂ν

∣∣
Γ′ lies in L(Z̃ ′;L2(Γ′)) for Γ′ ∈ {Γ(0),Γ,Γ(0) ∪ Γ}.

(5.5)
The spaces Z̃, X , and the interior operator L are defined by

L :=
[

0 ρ−1

ρc2Δ 0

]
: Z̃ → X with

Z̃ := Z̃ ′ ×H1
Γ(1)(Ω) and X := H1

Γ(1)(Ω)× L2(Ω)
(5.6)

where H1
Γ(1)(Ω) and Z̃ ′ are given by (5.3) and (5.4). For the space X , we

use the energy norm

‖ [ z1z2 ] ‖2X :=
1

2

(
ρ‖|∇z1|‖2L2(Ω) +

1

ρc2
‖z2‖2L2(Ω)

)
. (5.7)

The Poincaré inequality ‖z1‖L2(Ω) ≤MΩ‖∇z1‖L2(Ω) holds for z1 ∈ H1
Γ(1)(Ω)

as given in Theorem A.4 in Appendix A. Therefore (5.7) defines a norm on
X , equivalent to the Cartesian product norm

‖ [ z1z2 ] ‖2H1(Ω)×L2(Ω) := ‖z1‖2L2(Ω) + ‖∇z1‖2L2(Ω) + ‖z2‖2L2(Ω)

so that Z̃ ⊂ X with a continuous embedding, and L ∈ L(Z̃;X ) with respect
to the Z̃-norm

‖ [ z1z2 ] ‖2Z̃ := ‖z1‖2Z̃′ + ‖z2‖2L2(Ω) + ‖∇z2‖2L2(Ω).

Defining U := L2(Γ(0)) and Ũ := L2(Γ) with the norms

‖u0‖2U = A(0)−1‖u0‖2L2(Γ(0)) and ‖ũ0‖Ũ = ‖ũ0‖L2(Γ), (5.8)

we get U ⊕ Ũ = L2(Γ(0) ∪ Γ) where we use the Cartesian product norm of
U and Ũ .

The boundedness of the Dirichlet trace and the property (5.5) of the
Neumann trace imply that

[
G
Gα

] ∈ L(Z̃;U ⊕ Ũ) and
[

K
Kα

] ∈ L(Z̃;U ⊕ Ũ)
where [

G
Gα

] [
z1
z2

]
:=

1

2

⎡⎣√A(0)
ρc

(
ρc∂z1∂ν

∣∣
Γ(0)

+ z2
∣∣
Γ(0)

)
√
ρ√
α
∂z1
∂ν

∣∣
Γ
+
√
α√
ρ z2

∣∣
Γ

⎤⎦ and

[
K
Kα

] [
z1
z2

]
:=

1

2

⎡⎣√A(0)
ρc

(
ρc∂z1∂ν

∣∣
Γ(0)

− z2
∣∣
Γ(0)

)
√
ρ√
α
∂z1
∂ν

∣∣
Γ
−
√
α√
ρ z2

∣∣
Γ

⎤⎦ .

(5.9)

The reason for defining the triple Ξ̃α := (
[

G
Gα

]
, L,

[
K
Kα

]
) is to obtain

first order equations from (5.1), using the equivalence of φtt = c2Δφ and
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d
dt

[
φ
p

]
=

[
0 ρ−1

ρc2Δ 0

] [
φ
p

]
where p = ρφt is the sound pressure. More pre-

cisely, equations (5.1)–(5.2) are (at least formally) equivalent with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dt

[
φ(t)

p(t)

]
= L

[
φ(t)

p(t)

]
,[

u(t)

0

]
=

[
G

Gα

][
φ(t)

p(t)

]
,

(5.10)

and [
y(t)
ỹ(t)

]
=

[
K
Kα

] [
φ(t)
p(t)

]
(5.11)

for t ∈ R
+, with the initial conditions

[
φ(0)
p(0)

]
=

[
φ0
p0

]
. The Green–Lagrange

identity

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X + ‖[ K
Kα

]
[ z1z2 ]‖2U⊕Ũ = ‖[ G

Gα

]
[ z1z2 ]‖2U⊕Ũ for all [ z1z2 ] ∈ Z̃

(5.12)
is a key fact for proving the conservativity of Ξ̃α, and we verify it next.
Green’s identity (Theorem A.3 in Appendix A) gives

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X = 2Re
〈
[ z1z2 ] ,

[
ρ−1z2
ρc2Δz1

]〉
X

= 2Re
1

2

(
ρ

∫
Ω
∇z1 · ∇(z2/ρ) dV +

1

ρc2
〈
ρc2Δz1, z2

〉
L2(Ω)

)
= Re

(∫
Γ(0)∪Γ∪Γ(1)

∂z1
∂ν

z2 dA

)

= Re

〈
∂z1
∂ν

∣∣
Γ(0)

, z2
∣∣
Γ(0)

〉
L2(Γ(0))

+Re

〈
∂z1
∂ν

∣∣
Γ
, z2

∣∣
Γ

〉
L2(Γ)

(5.13)

because z2
∣∣
Γ(1)

= 0 by (5.6). On the other hand, we obtain

‖G [ z1z2 ]‖2U = A(0)−1 〈G [ z1z2 ] , G [ z1z2 ]〉L2(Γ(0)) (5.14)

=
1

4ρc

(
ρ2c2

∥∥∥∥∂z1∂ν

∣∣
Γ(0)

∥∥∥∥2
L2(Γ(0))

+ 2ρcRe

〈
∂z1
∂ν

∣∣
Γ(0)

, z2
∣∣
Γ(0)

〉
L2(Γ(0))

+
∥∥∥z2∣∣Γ(0)∥∥∥2L2(Γ(0))

)

and also

‖K [ z1z2 ]‖2U = A(0)−1 〈K [ z1z2 ] ,K [ z1z2 ]〉L2(Γ(0)) (5.15)

=
1

4ρc

(
ρ2c2

∥∥∥∥∂z1∂ν

∣∣
Γ(0)

∥∥∥∥2
L2(Γ(0))

− 2ρcRe

〈
∂z1
∂ν

∣∣
Γ(0)

, z2
∣∣
Γ(0)

〉
L2(Γ(0))

+
∥∥∥z2∣∣Γ(0)∥∥∥2L2(Γ(0))

)
,

where G [ z1z2 ] and K [ z1z2 ] are the first components in (5.9) respectively.
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Similarly, we compute the two terms needed in

‖Gα [
z1
z2 ]‖2Ũ − ‖Kα [

z1
z2 ]‖2Ũ (5.16)

= 〈Gα [
z1
z2 ] , Gα [

z1
z2 ]〉L2(Γ) − 〈Kα [

z1
z2 ] ,Kα [

z1
z2 ]〉L2(Γ) = Re

〈
∂z1
∂ν

∣∣
Γ
, z2

∣∣
Γ

〉
L2(Γ)

,

where Gα [
z1
z2 ] and Kα [

z1
z2 ] are the second components in (5.9) respectively.

Now (5.13) – (5.16) implies (5.12) as required.
We proceed to show that the the triple Ξα := (G

∣∣
Zα

, L
∣∣
Zα

,K
∣∣
Zα

) for
all α > 0 is a scattering passive boundary node on Hilbert spaces (U ,X ,U)
with the solution space

Zα :=

{[
z1
z2

]
∈ Z̃ ′ ×H1

Γ(1)(Ω) :
∂z1
∂ν

∣∣
Γ
+

α

ρ
z2
∣∣
Γ
= 0

}
. (5.17)

Note that Zα is a closed subspace of Z̃ because Gα ∈ L(Z̃; Ũ) and Zα =
ker (Gα). Therefore, we can use the norm of Z̃ on Zα. The conservative
case α = 0 is slightly different, and it is treated separately in Corollary 5.2.

Theorem 5.1. Take α > 0 and let the operators L, G, K, and Hilbert spaces
X , U , and Zα be defined as above. Let

[
φ0
p0

] ∈ Zα and u ∈ C2(R+;U) such

that the compatibility condition G
[
φ0
p0

]
= u(0) holds. Then the following

holds:

(i) The triple Ξα := (G
∣∣
Zα

, L
∣∣
Zα

,K
∣∣
Zα

) is a scattering passive boundary
node on Hilbert spaces (U ,X ,U) with solution space Zα. The semi-
group generator Aα = L

∣∣
ker(G)∩ker(Gα)

of Ξα satisfies A∗α = −L∣∣
ker(K)∩ker(Kα)

and 0 ∈ ρ(Aα) ∩ ρ(A∗α).

(ii) The equations4 in (5.10) have a unique solution
[
φ
p

] ∈ C1(R+;X ) ∩
C(R+;Zα). Hence we can define y ∈ C(R+;U) by equation (5.11).

(iii) The solution of (5.10) satisfies the energy dissipation inequality

d

dt
‖
[
φ(t)
p(t)

]
‖2X ≤ ‖u(t)‖2U − ‖y(t)‖2U , t ∈ R

+. (5.18)

It follows from claim (ii) and the definition of the norms of Zα and X
that φ ∈ C1(R+;H1(Ω)) ∩ C2(R+;L2(Ω)), ∇φ ∈ C1(R+;L2(Ω;R3)), and
Δφ ∈ C(R+;L2(Ω)). These are the same smoothness properties that have
been used in [26, see, in particular, Eq. (1.4)] for deriving the generalised
Webster’s equation in (1.3) from the wave equation.

4Note that (2.1) is equivalent with (5.1) and (5.10) in the context of this theorem.
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Proof. Claim (i): By Theorem 3.1 and the discussion preceding this theo-
rem, it is enough to show that Ξ̃α = (

[
G
Gα

]
, L,

[
K
Kα

]
) introduced above is a

conservative boundary node which is easiest done by using Proposition 2.4.
Since the Green–Lagrange identity (2.6) has already been established, it
remains to prove conditions (ii) (with

[
G
Gα

]
in place of G) and (iv) (with[

K
Kα

]
in place of K) of Proposition 2.4 with β = γ = 0. It is enough to

consider only β = γ = 0 because the resolvent sets of L
∣∣
ker(G)

and −L∣∣
ker(K)

in Proposition 2.4 are open, and then the same conditions hold for some
β, γ > 0 as well.

For an arbitrary g ∈ L2(Γ(0) ∪ Γ) there exists a unique variational5

solution z1 ∈ H1
Γ(1)(Ω) of the problem

Δz1 = 0, z1
∣∣
Γ(1)

= 0,
∂z1
∂ν

∣∣
Γ(0)∪Γ = g. (5.19)

Since z1 ∈ Z̃ ′, we have ∂
∂ν

∣∣
Γ(0)∪ΓZ̃ ′ = L2(Γ(0) ∪ Γ) which obviously gives

both ∂
∂ν

∣∣
Γ(0)
Z̃ ′ = L2(Γ(0)) and ∂

∂ν

∣∣
Γ
Z̃ ′ = L2(Γ). Clearly Z̃ ′ ⊕ {0} ⊂ Z̃ and

the surjectivity of
[

G
Gα

]
follows from[

G
Gα

] [
z1
0

]
:=

1

2

[√
A(0)ρc ∂

∂ν

∣∣
Γ(0)√

ρ√
α

∂
∂ν

∣∣
Γ

]
z1.

To see this, for a given h ∈ L2(Γ(0) ∪ Γ), we choose

g =

⎧⎨⎩2 1√
A(0)ρc

h, on Γ(0),

2
√
α√
ρh, on Γ

in (5.19) to find a function z1 so that
[

G
Gα

]
[ z10 ] = h. The surjectivity of[

K
Kα

]
is proved similarly.

To show that Lker
([

G
Gα

])
= L (ker (G) ∩ ker (Gα)) = X , let [ w1

w2 ] ∈ X
be arbitrary. Then [w1

w2 ] = L [ z1z2 ] =
[

ρ−1z2
ρc2Δz1

]
for [ z1z2 ] ∈ ker (G) ∩ ker (Gα)

if and only if z2 = ρw1 and the variational solution z1 ∈ H1
Γ(1)(Ω) of the

problem

ρc2Δz1 = w2, z1
∣∣
Γ(1)

= 0,
∂z1
∂ν

∣∣
Γ
= −αρw1

∣∣
Γ
, c

∂z1
∂ν

∣∣
Γ(0)

= −w1

∣∣
Γ(0)

exists and belongs to the space Z ′. Now, this condition can be verified
by standard variational techniques because w2 ∈ L2(Ω) and w1 ∈ H1

Γ(1)(Ω)

which implies w1

∣∣
Γ(0)∪Γ ∈ H1/2(Γ(0)∪Γ) ⊂ L2(Γ(0)∪Γ). That Lker ([ K

Kα

])
=

5We leave it to the interested reader to derive the variational form using Green’s identity
(A.9) and then carry out the usual argument by the Lax–Milgram theorem; see, e.g., [12,
Lemma 2.2.1.1].
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X is proved similarly. All the conditions of Proposition 2.4 are now satisfied
with β = γ = 0, and thus Ξ̃α is a conservative boundary node. It now follows
from Theorem 3.1 that Ξα is a passive boundary node which has the com-
mon semigroup generator Aα = L

∣∣
ker(G)∩ker(Gα)

with the original conserva-

tive boundary node Ξ̃α. By [29, Theorem 1.9 and Proposition 4.3], the dual
system of Ξ̃α is of boundary control type, and it coincides with the time-flow
inverted boundary node Ξ̃←α . Now, the unbounded adjoint A∗α is the semi-
group generator of the dual system Ξ̃←α , and hence A∗α = −L∣∣

ker(K)∩ker(Kα)

as claimed.
It remains to show that 0 /∈ σ(Aα). We have already shown above that

Aαdom (Aα) = X with dom (Aα) = ker (G) ∩ ker (Gα), and the remaining
injectivity part follows if we show that ker (L) ∩ ker (G) ∩ ker (Gα) = {0}.
This follows because the variational solution in H1(Ω) of the homogenous
problem

Δz1 = 0, z1
∣∣
Γ(1)

= 0,
∂z1
∂ν

∣∣
Γ(0)∪Γ = 0

is unique. That 0 /∈ σ(A∗α) follows similarly by considering the time-flow
inverted system Ξ̃←α instead.

Claims (ii) and (iii): Since scattering passive boundary nodes are inter-
nally well-posed, it follows from, e.g., [29, Lemma 2.6] that equations (2.1)
are solvable as has been explained in Section 2.

Corollary 5.2. Use the same notation and make the same assumptions as
in Theorem 5.1. If α = 0, then claims (i) — (iii) of Theorem 5.1 hold in
the stronger form: (i’) the triple Ξ0 := (G

∣∣
Z0
, L

∣∣
Z0
,K

∣∣
Z0
) is a scattering

conservative boundary node on Hilbert spaces (U ,X ,U) with the solution
space Z0 := Z̃ ′0 ×H1

Γ(1)(Ω) where

Z̃ ′0 := {f ∈ H1
Γ(1)(Ω) : Δf ∈ L2(Ω),

∂f

∂ν

∣∣
Γ(0)

∈ L2(Γ(0)),
∂f

∂ν

∣∣
Γ
= 0}; (5.20)

and (iii’) the energy inequality (5.18) holds as an equality.

Claim (ii) of Theorem 5.1 remains true without change. Thus, the solution
φ has the same regularity properties as listed right after Theorem 5.1.

Proof. Because the operators Gα and Kα refer to 1/
√
α, we cannot simply

set α = 0 in the proof. This problem could be resolved by making the norm
of Ũ dependent on α which we want to avoid. A direct argument can be
given without ever defining Ξ̃α. To prove the Green–Lagrange identity

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X + ‖K [ z1z2 ]‖2U = ‖G [ z1z2 ]‖2U for all [ z1z2 ] ∈ Z̃0 (5.21)

for Ξ0, one simply omits the last term on the right hand side of (5.13) by
using the Neumann condition ∂z1

∂ν

∣∣
Γ
= 0 from (5.20). Then (5.21) follows
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from (5.13)—(5.15), leading ultimately to (5.18) with an equality. The re-
maining parts of claim (i’) follow by the argument given in the proof of
Theorem 5.1.

This result generalises the reflecting mirror example in [29, Section 5],
and further generalisations are given in Section 6.

6 Conclusions and generalisations

We have given a unified treatment of a 3D wave equation model on tubular
structures and the corresponding Webster’s horn model in the form it is
derived and used in [25, 26]. Both the forward time solvability and the energy
inequalities have been treated rigorously, and the necessary but hard-to-find
Sobolev space apparatus was presented in App. A. The strictly dissipative
case was reduced to the conservative case using auxiliary Theorems 3.1 and
3.2 that have independent interest.

Theorem 5.1 can be extended and generalised significantly using only
the techniques presented in this work. Firstly, a dissipation term, analogous
with the one appearing in Webster’s equation (4.1), can be added to the
wave equation part of (5.1) while keeping rest of the model the same:

Corollary 6.1. Theorem 5.1 remains true if the wave equation φtt = c2Δφ
in (5.1) is replaced by φtt = c2Δφ + g(·)φt where g is a smooth function
satisfying g(r) ≤ 0 for all r ∈ Ω.

Indeed, this follows by using Theorem 3.2 on the result of Theorem 5.1 in the
same way as has been done in Section 4. Even now the resulting negative
perturbation H on the original interior operator L in (5.6) satisfies H ∈
L(X ). The same dissipation term can, of course, be added to Corollary 5.2
(where α = 0) as well but then the resulting boundary node is only passive
unless g ≡ 0.

Theorem 5.1 can be generalised to cover much more complicated geome-
tries Ω ⊂ R

3 than tube segments with circular cross-sections. Inspecting the
construction of the boundary node Ξα and the accompanying Hilbert spaces
in Section 5, it becomes clear that much more can be proved at the cost of
more complicated notation but nothing more:

Corollary 6.2. Let Ω ⊂ R
3 be a bounded Lipschitz domain satisfying

standing assumptions (i) – (iv) in App. A. Denote the smooth boundary
components of Ω by Γj where j ∈ J ⊂ N satisfying ∂Ω = ∪j∈JΓj. Let
J = J1 ∪ J2 ∪ J3 where the sets are pairwise disjoint, and at least J1and J3
are nonempty. Define the open Lipschitz surfaces Γ(0),Γ,Γ(1) ⊂ ∂Ω through
their closures Γ(0) = ∪j∈J1Γj, Γ = ∪j∈J2Γj, and Γ(1) = ∪j∈J3Γj, respec-
tively. Let α = {αj}j∈J2 ⊂ (−∞, 0] be a vector of dissipation parameters.
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Then the wave equation model (5.1) with equations

αj
∂φ

∂t
(r, t) +

∂φ

∂ν
(r, t) = 0 for all r ∈ Γj , t ≥ 0, and j ∈ J2

in place of the fourth equation in (5.1) defines the boundary node Ξα and
the Hilbert spaces X , U , and Zα in a same way as presented in Section 5.
Moreover, Theorem 5.1 and Corollary 5.2 (where αj = 0 for all j ∈ J2) hold
without change.

In particular, the set Ω may be an union of a finite number of tubular
domains described in Section 1. Even loops are possible and the interior do-
main dissipation can be added just like in Corollary 6.1. This configuration
can be found in the study of the spectral limit behaviour of Neumann–
Laplacian on graph-like structures in [15, 35].

Comments on the proof. The argument in Section 5 defines Ξα, the Hilbert
spaces X , U , and Zα, and the Green–Lagrange identity by splitting ∂Ω
into three smooth components and patching things up using the results of
App. A. The same can be done on any finite number of components since
the results of App. A are sufficiently general to allow it. The solvability of
the variational problems in the proof of Theorem 5.1 do not depend on the
number of such boundary components either.

There is nothing in Section 5 that would exclude the further generalisa-
tion to Ω ⊂ R

n for any n ≥ 2 if standing assumptions (i) – (iv) in App. A
remain true. If n = 2 and Ω is a curvilinear polygon (i.e., it is simply
connected), the necessary PDE toolkit can be found in [12, Section 1].

Also Theorem 4.1 has extensions but not as many as Theorem 5.1.
Firstly, the nonnegative constant α can be replaced by a nonnegative func-
tion α(·) ∈ C[0, 1] since the s-dependency is already present in the operator
D in (4.4). Secondly, strong boundary nodes described by Theorem 4.1
can be scaled to different interval lengths and coupled to finite transmis-
sion graphs as explained in [2] for impedance passive component systems.
The full treatment of a simple transmission graph, consisting of three Web-
ster’s horn models in Y-configuration, has been given in [2, Theorem 5.2].
More general finite configurations can be treated similarly, and the resulting
impedance passive system can be translated to a scattering passive system
by the external Cayley transform [30, Section 3], thus producing a gener-
alisation of Theorem 4.1. We note that there is not much point in trying
to derive the transmission graph directly from scattering passive systems
since the continuity equation (for the pressure) and Kirchhoff’s law (for the
conservation of flow) at each node is easiest described by impedance notions.

That Theorem 3.2 cannot be used for all possible dissipation terms is
seen by considering the wave equation with Kelvin–Voigt structural damping
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term

ψtt = c2ψss +
∂

∂s

(
β(s)

∂

∂s
ψt

)
where β(s) ≥ 0. (6.1)

For details of this dissipation model, see, e.g., [24]. To obtain the full dy-
namical system analogous to the one associated with Webster’s equation, the
same boundary and initial conditions can be used as in (1.3) for β ∈ C∞[0, 1]
compactly supported (0, 1). Thus the operators GW and KW do not change.
Following Section 4 we use the velocity potential and the pressure as state
variables [ ψπ ]. We define the Hilbert spaces ZW and XW similarly as well as
the operators

LW :=

[
0 ρ−1

ρc2 ∂2

∂s2
0

]
: ZW → XW and

H̃ :=

[
0 0

0 ∂
∂s

(
β(s) ∂

∂s

)] : dom
(
H̃
)
⊂ XW → XW

where dom
(
H̃
)

:= H1
{1}(0, 1) × {f ∈ L2(0, 1) : β(s)∂f∂s ∈ H1(0, 1)}. The

physical energy norm for XW is given by (4.5) with A(s) = Σ(s) ≡ 1 rep-
resenting a constant diameter straight tube. If the parameter β ≡ 0, the

colligation (GW , LW ,KW ) is a special case of the conservative system Ξ
(W )
0

described in Theorem 4.1. Clearly, the domain of H̃ cannot be further ex-
tended without violating the range inclusion in XW . On the other hand, the

inclusion Z ⊂ dom
(
H̃
)
required by Theorem 3.2 is not satisfied.
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A Sobolev spaces and Green’s identity

We prove a sufficiently general form of Green’s identity that holds in a tubu-
lar domain Ω (that has a Lipschitz boundary) with minimal assumptions on
any functions involved. We make the following standing assumptions on Ω:

(i) Ω is a bounded Lipschitz domain so that Ω locally on one side of is
boundary ∂Ω;

(ii) there is a finite number of smooth, open, connected, and disjoint (n−
1)-dimensional surfaces Γj with the following property: the boundary
∂Ω is a union of all Γj ’s and parts of their common boundaries Γj ∩Γk

for j 	= k;

(iii) Hn−2(Γj ∩ Γk) <∞ for all j 	= k where Hm(M) is the m-dimensional
Hausdorff measure for 1 ≤ m ≤ n of M ⊂ R

n; and

(iv) for each j, there is a C∞ vector field νj defined in a neighbourhood of
Ω such that νj(r) is the exterior unit normal to Γj at r ∈ Γj .

That Γj ⊂ R
n is an open, bounded, and smooth (n− 1)-dimensional surface

means plainly the following: there is an open and bounded Γ̃j ⊂ R
n−1 and

a C∞-diffeomorphism φj from Γ̃j onto Γj . The pair (φj , Γ̃j) is a global
coordinate representation of Γj .

The boundary conditions in Section 5 involve Dirichlet conditions on
some parts of the boundary ∂Ω and Neumann type conditions on other
parts of the same connected component of ∂Ω. All this is in contrast with
the inconvenient technical assumption on ∂Ω in, e.g., [17, 29, 43] that must
be avoided in the verification of the Green–Lagrange identity in Section 5 and
elsewhere. We need a version of Green’s identity suitable for this situation.
This is in Theorem A.3 below. The key fact ensuring the validity of this
identity is that the interfaces where we switch between different boundary
conditions are so small that Sobolev functions do not see them. That this is
the case is a consequence of the assumption (iii) above, and it is expressed
rigorously in the following auxiliary result.
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Lemma A.1. Let Ω be a bounded domain with a Lipschitz boundary, and
let E ⊂ R

n be a compact set of zero capacity; i.e.,

C(E) := inf
u∈S(E)

∫
Rn

(
|u|2 + |∇u|2

)
dV = 0 (A.1)

where

S(E) := {u ∈ C∞(Rn) : 0 ≤ u ≤ 1 in R
n and u = 1 in N, where N is open and E ⊂ N}.

Then

(i) the set DE(R
n) is dense in H1(Rn) where

DE(R
n) := {u ∈ D(Rn) : u vanishes in an open neighbourhood of E}; and

(A.2)

(ii) the set
DE(Ω) := {u

∣∣
Ω
: u ∈ DE(R

n)}
is dense in H1(Ω).

Proof. Claim (i): Let u ∈ H1(Rn) and ε > 0. Then by [12, Theorem 1.4.2.1]
there is v ∈ D(Rn) such that ‖u− v‖H1(Rn) < ε/2.

By the vanishing capacity assumption (A.1), there is a sequence {ϕj}j=1,2,... ⊂
C∞(Rn) such that ϕj

∣∣
Nj

= 1 for some neighbourhoods Nj of E, and also

lim
j→∞

∫
Rn

(
|ϕj |2 + |∇ϕj |2

)
dV = 0. (A.3)

Defining vj(r) := v(r)(1−ϕj(r)) we see that each of these functions satisfies
vj ∈ DE(R

n). It remains to prove that ‖vj − v‖H1(Rn) < ε/2 for all j large
enough, since then

‖vj − u‖H1(Rn) ≤ ‖vj − v‖H1(Rn) + ‖u− v‖H1(Rn) < ε.

By possibly replacing {ϕj}j=1,2,... by its subsequence, we may assume that
ϕj → 0 pointwise almost everywhere; see [36, Theorem 3.12]. Because
|vj(r)| ≤ |v(r)| for all r ∈ R

n and j = 1, 2, . . ., we have vj → v in L2(Rn) by
the Lebesgue dominated convergence theorem. For the gradients, we note
that ∇(vj − v) = −ϕj∇v − v∇ϕj . Thus |∇(vj − v)| → 0 in L2(Rn), since
both ϕj and |∇ϕj | tend to zero in L2(Rn) by (A.3).

Claim (ii): Let u ∈ H1(Ω) and take ε > 0. Since Ω has a Lipschitz
boundary, there is an extension operator T ∈ L(H1(Ω);H1(Rn)) such that
(Tu)

∣∣
Ω

= u; see [12, Theorem 1.4.3.1]. By claim (i), there is a function
v ∈ DE(R

n) such that

‖u− v
∣∣
Ω
‖H1(Ω) ≤ ‖Tu− v‖H1(Rn) < ε

which completes the proof.
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Let us review the Sobolev spaces and the boundary trace mappings on Ω
and ∂Ω when the standing assumptions (i) – (iv) above hold. The boundary
Sobolev spaces Hs(∂Ω) and Hs(Γj) for s ∈ [−1, 1] are defined as in [12,
Definitions 1.2.1.1 and 1.3.3.2]. The zero extension Sobolev spaces on Γj

are defined by

H̃s(Γj) := {u ∈ Hs(Γj) : ũ ∈ Hs(∂Ω)}

for s ∈ (0, 1] where

ũ(r) :=

{
u(r) if r ∈ Γj

0 if r ∈ ∂Ω \ Γj .
(A.4)

We use the Hilbert space norms ‖u‖H̃s(Γj)
:= ‖ũ‖Hs(∂Ω). The space H̃s(Γj)

is closed in this norm since restriction to Γj from ∂Ω is a bounded operator
from Hs(∂Ω) to Hs(Γj) for 0 ≤ s ≤ 1. This boundedness follows trivially
by restriction using the Gagliardo seminorm, see [12, Eq. (1,3,3,3) on p. 20].
Then Hs(∂Ω) ⊂ L2(∂Ω) and H̃s(Γj) ⊂ Hs(Γj) ⊂ L2(Γj) with bounded
inclusions.

The Dirichlet trace operator γ is first defined for functions f ∈ D(Ω)
simply by restriction γf := f

∣∣
∂Ω

. This operator has a unique extension to

a bounded operator γ ∈ L(H1(Ω);H1/2(∂Ω)); see [12, Theorem 1.5.1.3] and
Lemma A.1. All this holds for any Lipschitz domain Ω.

We define the Neumann trace operator separately on each surface Γj

using the vector fields νj . Such an operator γj
∂

∂νj
is first defined on D(Ω)

(with values in L2(∂Ω)) by setting
(
γj

∂
∂νj

f
)
(r) := νj(r) · ∇f(r) for all

r ∈ Γj ; here γjf := f
∣∣
Γj

and ∂
∂νj

:= νj ·∇. It is easy to see that ∂f
∂νj

∈ H1(Ω)

and hence γj
∂

∂νj
has an extension to an operator in L(H2(Ω);H1/2(Γj)) by

[12, Theorem 1.5.1.3]. We then define the full Neumann trace operator γ ∂
∂ν

on ∪jΓj by

γ
∂f

∂ν
(r) := γj

∂f

∂νj
(r) for all f ∈ H2(Ω) and (almost) all r ∈ Γj .

Note that the function γ ∂f
∂ν is not defined at all on the exceptional set of

capacity zero
E := ∪j 
=k(Γj ∩ Γk) (A.5)

of the non-smooth part of ∂Ω. That C(E) = 0 follows from the standing
assumption (iii) by [6, Theorem 3, p. 154].

We need to extend each γj
∂

∂νj
to the Hilbert space

E(Δ;L2(Ω)) := {f ∈ H1(Ω) : Δf ∈ L2(Ω)}
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that is equipped with the norm defined by ‖f‖2E(Δ;L2(Ω)) = ‖f‖2H1(Ω) +

‖Δf‖2L2(Ω).

We use an appropriate L2 space as the pivot space for Sobolev spaces
and their duals.

Proposition A.2. Let the domain Ω ⊂ R
n satisfy the standing assumptions

(i) – (iv).

(i) Then each Neumann trace operator γj
∂

∂νj
(originally defined on D(Ω))

has a unique extension (also denoted by γj
∂

∂νj
) that is bounded from

E(Δ;L2(Ω)) into the dual space of H̃1/2(Γj).

(ii) We have∫
Ω
(Δu) v dV +

∫
Ω
∇u · ∇v dV =

∑
j

〈
γj

∂u

∂ν
, γjv

〉
[H̃1/2(Γj)]d,H̃1/2(Γj)

for all u ∈ E(Δ;L2(Ω)) and v ∈ H1(Ω) such that γjv ∈ H̃1/2(Γj) for
all j.

Proof. The classical Green’s identity for u ∈ D(Ω) and v ∈ DE(Ω) is∫
Ω
(Δu) v dV +

∫
Ω
∇u · ∇v dV =

∑
j

∫
Γj

γj
∂u

∂νj
γjv dA, (A.6)

where E is the exceptional set in (A.5). Indeed, since v vanishes near the
interfaces Γj ∩ Γk for j 	= k, we may initially apply Green’s identity just
like (A.6) but over a subdomain of Ω that has been obtained from Ω by
rounding slightly at all ∂Γj ’s but preserving essentially all of ∂Ω. Then we
get (A.6) by rewriting the result as integrals over the original Ω and the
original boundary pieces Γj , noting that on additional points the integrands
vanish because v ∈ DE(Ω).

It follows from (A.6) that we have for u ∈ D(Ω) and v ∈ DE(Ω) the
estimate ∣∣∣∣∣∣

∑
j

〈
γj

∂u

∂νj
, γjv

〉
L2(Γj)

∣∣∣∣∣∣ ≤ ‖u‖E(Δ;L2(Ω)) · 4‖v‖H1(Ω). (A.7)

BecauseDE(Ω) is dense inH1(Ω) by Lemma A.1 and γ ∈ L(H1(Ω);H1/2(∂Ω))
by the trace theorem [12, Theorem 1.5.1.3], we conclude that (A.7) holds
for all u ∈ D(Ω) and v ∈ H1(Ω).

Fix now j and g ∈ H̃1/2(Γj), and define g̃ ∈ H1/2(∂Ω) by (A.4). Because
the Dirichlet trace γ : H1(Ω) → H1/2(∂Ω) is bounded and surjective, it
has a continuous right inverse P ∈ L(H1/2(∂Ω);H1(Ω)), see [12, Theorem
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1.5.1.3]. Thus there exists v ∈ H1(Ω) such that γjv = g̃
∣∣
Γj

= g and γkv =

0 for k 	= j; we may choose v = P g̃. From this, we have the estimate
4‖v‖H1(Ω) ≤ K‖g̃‖H1/2(∂Ω) = K‖g‖H̃1/2(Γj)

.

It follows from all this and (A.7) that we have

|Φg(u)| ≤ K‖u‖E(Δ;L2(Ω)) · ‖g‖H̃1/2(Γj)
(A.8)

for all g ∈ H̃1/2(Γj) where Φg(u) :=
〈
γ ∂u
∂ν , g̃

〉
L2(∂Ω)

=
〈
γj

∂u
∂νj

, g
〉
L2(Γj)

for

u ∈ D(Ω). Since D(Ω) is dense in E(Δ;L2(Ω)) by [12, Lemma 1.5.3.9], we
may extend Φg, g ∈ H̃1/2(Γj), by continuity to a continuous linear functional
on E(Δ;L2(Ω)) satisfying estimate (A.8), too.

For each fixed u ∈ E(Δ;L2(Ω)), the mapping g 
→ Φg(u) is a contin-
uous linear functional on H̃1/2(Γj) by (A.8). Hence, there is a represent-
ing vector – denoted by γj

∂u
∂νj

– in the dual space [H̃1/2(Γj)]
d such that

Φg(u) =
〈
γj

∂u
∂νj

, g
〉
[H̃1/2(Γj)]d,H̃1/2(Γj)

. This proves claim (i). Claim (ii) fol-

lows by a density argument using claim (i) and (A.8).

Theorem A.3 (Green’s identity). Let the domain Ω ⊂ R
n satisfy the stand-

ing assumptions (i) – (iv) above. Assume that u ∈ H1(Ω) is such that
Δu ∈ L2(Ω) and satisfies ∂u

∂ν ∈ L2(∪k
j=1Γj) for some 1 ≤ k ≤ n. Then the

Green’s identity∫
Ω
(Δu) v dV+

∫
Ω
∇u·∇v dV =

k∑
j=1

∫
Γj

∂u

∂ν
v dA+

n∑
j=k+1

〈
γj

∂u

∂νj
, γjv

〉
[H̃1/2(Γj)]d,H̃1/2(Γj)

(A.9)
holds for functions v ∈ H1(Ω) such that γjv ∈ H̃1/2(Γj) for k + 1 ≤ j ≤ n.

For n = 2, this is a generalisation of [12, Theorem 1.5.3.11]. See also [12,
discussion on p. 62] for domains with C1,1-boundaries. The assumption
∂u
∂ν ∈ L2(∪k

j=1Γj) simply means that γj
∂u
∂νj

∈ L2(Γj) for all j = 1, 2, . . . , k

where γj
∂u
∂νj

is understood as an element of [H̃1/2(Γj)]
d which space includes

L2(Γj); see Proposition A.2.

Proof. As explained above, we have γjv, γj
∂u
∂νj

∈ L2(Γj) for all j = 1, . . . , k.

Then (A.9) follows from claim (ii) of Proposition A.2 under the additional
assumption that γjv ∈ H̃1/2(Γj) for all j. The functions in DE(Ω) clearly
satisfy this additional assumption, and they are dense in H1(Ω). This proves
the claim.

An alternative to the above piecewise construction is to start with the
global Neumann trace γ ∂

∂νu defined for u ∈ E(Δ;L2(Ω)) with values in

H−1/2(∂Ω), see, e.g., [45, Theorem 13.6.9]. The global Neumann trace γ ∂
∂νu
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can be restricted to the spaces H̃1/2(Γj), and claim (ii) of Proposition A.2
follows from a global Green’s identity in a general Lipschitz domain. How-
ever, one still needs Lemma A.1 to prove Theorem A.3.

It remains to prove the Poincaré inequality that is used to show that the
expression (5.7) is a valid Hilbert space norm for the state space. Let Γj be
one of the boundary components of ∂Ω as described above. By the standing
assumptions (i) and (ii) given in the beginning of this appendix, the set Γj

has a finite, positive area Aj =
∫
Γj

dA. Thus, we can define the mean value

operator Mj : H
1(Ω)→ C on Γj by

Mju =
1

Aj

∫
Γj

γju dA,

It is clear that Mj is a bounded linear functional on H1(Ω), and we may
regard it as an element of L(H1(Ω)) safistying M2

j = Mj by considering
Mju as a constant function on Ω.

Theorem A.4 (Poincaré inequality). Let the domain Ω ⊂ R
n satisfy the

standing assumptions (i) – (iv) above, and let Γj be one of the boundary
components of ∂Ω. There is a constant C <∞ such that

‖u−Mju‖L2(Ω) ≤ C‖∇u‖L2(Ω) (A.10)

for all u ∈ H1(Ω). Thus, we have ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) for u ∈ H1(Ω) ∩
ker (γj).

Proof. The argument is a standard argument by contradiction using the
Rellich–Kondrachov compactness theorem, see e.g. [6, Theorem 1, p. 144]).
For a contradiction against (A.10), assume that there exist functions uk ∈
H1(Ω) such that there is the strict inequality

‖uk −Mjuk‖L2(Ω) > k‖∇uk‖L2(Ω) for k = 1, 2, . . . .

None of the functions uk are constant functions since for such functions
(A.10) holds for any C ≥ 0. So, we can define the functions

vk :=
uk −Mjuk

‖uk −Mjuk‖L2(Ω)

satisfying for all k the normalisation ‖vk‖L2(Ω) = 1 and also Mjvk = 0 by
using M2

j = Mj . Since

‖∇vk‖2 =
‖∇uk‖2L2(Ω)

‖uk −Mjuk‖2L2(Ω)

<
1

k2

by the counter assumption, we get

‖vk‖2H1(Ω) = ‖vk‖2L2(Ω) + ‖∇vk‖2L2(Ω) ≤ 1 +
1

k2
≤ 2.
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Since the embedding H1(Ω) ⊂ L2(Ω) is compact (by the boundedness of Ω
and the Rellich–Kondrachov compactness theorem, see e.g. [6, Theorem 1, p.
144]), we have a function v such that vk → v in L2(Ω) by possibly replacing
{vk} by its subsequence. Moreover, ‖v‖L2(Ω) = 1 since ‖vk‖L2(Ω) = 1 for all
k.

Since ‖∇vk‖L2(Ω) ≤ 1/k, we see that vk → v inH1(Ω) and hence∇v = 0.
Thus v is a constant function. Because Mjv = limk→∞Mjvk = 0, we
conclude that v = 0 which contradicts the fact that ‖v‖L2(Ω) = 1. This
proves (A.10), and the Poincaré equality follows trivially from this.
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