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Human voice production
Simplified vowel production:

Mouth︸ ︷︷ ︸
(exterior load)

↑
Vocal tract︸ ︷︷ ︸

(filter)

↑
Vocal folds︸ ︷︷ ︸

(source)

Flanagan, J. L. (1972). Speech Analysis Synthesis and Perception,
Springer-Verlag.

Notable facts:

• Vocal tract (VT) shape changes, and there are feedbacks.

• Not all speech sounds originate in vocal folds.



Modelling speech requires data

• Simultaneous speech recording during 3D MR imaging.

• Geometry for the computational model is constructed from
MR images by custom software.



Geometries of Finnish vowels

PDE’s of acoustics should be solved in these domains.



Multiphysics of vowel production, Dico
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Wave equation model (“Dirichlet mouth”)

Equations for the velocity potential φ = φ(r, t):
φtt = c2∆φ in VT volume Ω

φ(r, t) = 0 at mouth opening Γ(`)
∂φ
∂ν (r, t) + αφt(r, t) = 0 on VT walls Γ

c ∂φ∂ν (r, t) + φt(r, t) = 2
√

c
ρA(0) u(r, t) at vocal folds Γ(0).

This is a passive boundary node (with output omitted).

c speed of sound

ρ density of air

α boundary dissipation
coefficient

ν exterior normal

A(0) area of Γ(0)

Piriform

sinuses

Valleculae

Glottis



Cheaper model for tubular domains?
Let Ω ⊂ R3 be a variable diameter, curved tube. Now, is there an
approximate equation for the averages

φ̄(s, t) :=
1

A(s)

∫
Γ(s)

φdA for s ∈ [0, `]

of the velocity potential φ given by the wave equation on Ω?

YES, the generalised Webster’s horn model
for longitudinal dynamics!

` length of Ω

γ(·) centreline of Ω

Γ(s) slice of Ω, normal
to γ(·) at s

A(s) area of Γ(s)

γ(·) t(s)

b(s)n(s)

Γ(0)

Γ(`)

Γ(s)



Webster’s lossy resonator
Equations for the Webster’s velocity potential ψ = ψ(s, t):
ψtt = c(s)2

A(s)
∂
∂s

(
A(s)∂ψ∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ
∂t in vocal tract s ∈ [0, `]

ψ(`, t) = 0 at mouth s = `

−cψs(0, t) + ψt(0, t) = 2
√

c
ρA(0) ũ(t) on vocal folds s = 0.

This is a passive strong boundary node (with output omitted).

c , ρ, α as above

` length of the VT

A(s) area at s ∈ [0, `]

Σ(s) curvature correction

W (s) stretching correction

From now on, we restrict ourselves to the conservative case α = 0.



Approximation by Webster’s model? (1)

See Eq. (3.11)-(3.13)

+

-

0

Don’t worry about the formulas for functions F ,G ,H.



Approximation by Webster’s model? (2)

+

-

To make a long story short: F + G + H → 0 as φ− φ̄→ 0, giving
an a posteriori estimate for the approximation error ψ − φ̄.



Transmission graphs

Any finite number of passive strong boundary nodes can be
coupled to a transmission graph that is passive and internally
well-posed as well.

Treatment of
the subglottal acoustics
using Webster’s model
on subdividing bronchi,
bronchioles, and alveoli?

We just use Webster’s model for exponential horn in “Dico”.



Resonance equations

Ceteris paribus, the measured resonance structure from vowel
sounds should match the computed resonances from the model.

Wave Equation → Helmholtz equation:

λ2Φλ = c2∆Φλ in VT volume Ω.

Webster’s Equation → time-independent Webster:

λ2ψλ =
c2Σ(s)2

A(s)

∂

∂s

(
A(s)

∂ψλ
∂s

)
for s ∈ [0, `].

• The boundary conditions for the time-variant PDE give the
corresponding boundary conditions of the resonance PDE.

• Discrete resonance frequencies: R = 1
2π Im(λ).



Helmholtz mode shapes Φλ for [oe]

R1 R2
R3 R4

R5 R6 R7 R8

It seems a general fact that first three are purely longitudinal.



Matching measurements and
computations
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• Vertical lines: Helmholtz resonances with “Dirichlet mouth”.

• Curve families: Spectral envelopes from recorded speech.
The upper during MRI, the lower in anechoic chamber.



Exterior acoustics (1)

Until now, the exterior space acoustic have been omitted, and the
Dirichlet boundary condition at mouth has been used instead.

The mixed resonance of
a nasal [A] at 1625Hz.
Both the vocal tract and
the idealised, semi-
cylindrical exterior domain
(d = 30 cm) are excited.

Neglecting the exterior acoustics leads to a frequency-dependent
discrepancy of ≈ 2.5 semi-tones between VT resonance
measurements from speech and Helmholtz computations.



Exterior acoustics (2)

For speech, we need “High Fidelity” in the vocal tract volume but
in the exterior acoustic space, “Low Adultery” will suffice.

The mixed resonance of
[A] is found at 1625Hz
when using 8900 D.o.F.
for the exterior domain.

The mixed resonance of
[A] is found at 1637Hz
when using 26 D.o.F.
for the exterior domain.



Exterior acoustics (3)

Typical numbers of exterior space reduction for the Helmholtz
problem:

# of tetr. F.E. D.o.F Reduced D.o.F.

Vocal tract 115000 26600 26600
Exterior space 38500 8900 26

The dimension reduction 8900→ 26 in degrees-of-freedom of
the exterior acoustics produces an error of ≈ 0.8 semi-tones in the
three lowest pure resonances R1,R2, and R3 of the vocal tract.

“Pure” vocal tract resonance means that the exterior acoustic
space is not significantly excited.



Partial dimension reduction (1)
Let us start with a dissipative BCS that is first splitted spatially
into two subdomains: interior and exterior.

• Π : L2(Γ1)→ Cn is a finite rank co-isometry. For example, it
may map to averages on disjoint parts of the interface Γ1.

• The orthogonal projection Π∗Π removes energy from the
feedback loop, thus preserving passivity.



Partial dimension reduction (2)

• The new endosystem has finite-dimensional internal input and
output spaces.

• Finally, the exosystem is replaced by a finite-dimensional
approximate system.



Conclusions

• Mathematics is difficult.

• Applications require a lot of hard work.

• Applied mathematics is difficult and
requires a lot of hard work.
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The End

Thanks for your patience.

Any questions?

http://speech.math.aalto.fi

http://speech.math.aalto.fi
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