System Theory of Speech

Antti Hannukainen, Jarmo Malinen, Antti Ojalammi

Aalto University, School of Science,
Department of Mathematics and Systems Analysis

Lorentz Center
May 23-26, Leiden
Human voice production

Simplified vowel production:

Mouth
(exterior load)

↑

Vocal tract
(filter)

↑

Vocal folds
(source)

Notable facts:

• Vocal tract (VT) shape changes, and there are feedbacks.
• Not all speech sounds originate in vocal folds.
Modelling speech requires data

- Simultaneous speech recording during 3D MR imaging.
- Geometry for the computational model is constructed from MR images by custom software.
Geometries of Finnish vowels

PDE’s of acoustics should be solved in these domains.
Multiphysics of vowel production, Dico

Vocal folds
- Low-order mass-spring system with tissue losses, Hertz impact model for vocal folds collisions
- Stenosis flow
- Subglottal pressure
- Glottal pulse generator

Glottal Flow
- Constricted flow
- Bernoulli flow with Hagen-Poiseulle viscous pressure loss, a term for turbulence losses
- Aerodynamic force
- Perturbation velocity at glottis

Couplings
- Counter pressure

Resonators
- Subglottal Webster resonator
- Vocal tract Webster resonator
- Extension to control surface

Terminations
- Lung impedance
- Mouth impedance
- Exterior acoustics
- Tuning to isospectrality

3D acoustic simulator

MRI and post-processing
- surface models
- area functions
- centrelines

Webster resonator

Vocal tract resonator by the Wave Equation

k

Counter pressure
Wave equation model ("Dirichlet mouth")

Equations for the velocity potential $\phi = \phi(r, t)$:

\[
\begin{align*}
\phi_{tt} &= c^2 \Delta \phi \\
n\phi(r, t) &= 0 \\
\frac{\partial \phi}{\partial n}(r, t) + \alpha \phi_t(r, t) &= 0 \\
c \frac{\partial \phi}{\partial n}(r, t) + \phi_t(r, t) &= 2 \sqrt{\frac{c}{\rho A(0)}} u(r, t)
\end{align*}
\]

in VT volume Ω
at mouth opening $\Gamma(\ell)$
on VT walls Γ
at vocal folds $\Gamma(0)$.

This is a passive boundary node (with output omitted).

- c speed of sound
- ρ density of air
- α boundary dissipation coefficient
- ν exterior normal
- $A(0)$ area of $\Gamma(0)$
Cheaper model for tubular domains?

Let $\Omega \subset \mathbb{R}^3$ be a variable diameter, curved tube. Now, is there an approximate equation for the averages

$$\bar{\phi}(s, t) := \frac{1}{A(s)} \int_{\Gamma(s)} \phi dA \quad \text{for} \quad s \in [0, \ell]$$

of the velocity potential ϕ given by the wave equation on Ω?

YES, the generalised Webster’s horn model for longitudinal dynamics!

ℓ length of Ω

$\gamma(\cdot)$ centreline of Ω

$\Gamma(s)$ slice of Ω, normal to $\gamma(\cdot)$ at s

$A(s)$ area of $\Gamma(s)$
Webster's lossy resonator

Equations for the Webster’s velocity potential $\psi = \psi(s, t)$:

$$
\begin{align*}
\psi_{tt} &= \frac{c(s)^2}{A(s)} \frac{\partial}{\partial s} \left(A(s) \frac{\partial \psi}{\partial s} \right) - \frac{2\pi \alpha W(s)c(s)^2}{A(s)} \frac{\partial \psi}{\partial t} \\
\psi(\ell, t) &= 0 \\
-c \psi_s(0, t) + \psi_t(0, t) &= 2\sqrt{\frac{c}{\rho A(0)}} \tilde{u}(t)
\end{align*}
$$

in vocal tract $s \in [0, \ell]$ at mouth $s = \ell$ on vocal folds $s = 0$.

This is a passive strong boundary node (with output omitted).

c, ρ, α as above
ℓ length of the VT
$A(s)$ area at $s \in [0, \ell]$
$\Sigma(s)$ curvature correction
$W(s)$ stretching correction

From now on, we restrict ourselves to the conservative case $\alpha = 0$.
Approximation by Webster’s model? (1)

\[
\begin{aligned}
\frac{\partial^2 \phi}{\partial t^2} - \frac{c^2}{A(s)} \frac{\partial}{\partial s} \left(A(s) \frac{\partial \phi}{\partial s} \right) &= F + G + H \\
-c \frac{\partial \phi}{\partial s}(0, t) + \frac{\partial \phi}{\partial t}(0, t) &= 2 \sqrt{\frac{c}{\rho A(0)}} \bar{u}(t)
\end{aligned}
\]

Don’t worry about the formulas for functions \(F, G, H \).
To make a long story short: $F + G + H \to 0$ as $\phi - \bar{\phi} \to 0$, giving an \emph{a posteriori} estimate for the approximation error $\psi - \bar{\phi}$.
Transmission graphs

Any finite number of passive strong boundary nodes can be coupled to a *transmission graph* that is passive and internally well-posed as well.

Treatment of the subglottal acoustics using Webster’s model on subdividing bronchi, bronchioles, and alveoli?

We just use Webster’s model for exponential horn in “Dico”.
Resonance equations

Ceteris paribus, the measured resonance structure from vowel sounds should match the computed resonances from the model.

Wave Equation \rightarrow Helmholtz equation:

$$\lambda^2 \Phi_\lambda = c^2 \Delta \Phi_\lambda \quad \text{in VT volume } \Omega.$$

Webster’s Equation \rightarrow time-independent Webster:

$$\lambda^2 \psi_\lambda = \frac{c^2 \Sigma(s)^2}{A(s)} \frac{\partial}{\partial s} \left(A(s) \frac{\partial \psi_\lambda}{\partial s} \right) \quad \text{for } s \in [0, \ell].$$

- The boundary conditions for the time-variant PDE give the corresponding boundary conditions of the resonance PDE.
- Discrete resonance frequencies: $R = \frac{1}{2\pi} \text{Im}(\lambda)$.
Helmholtz mode shapes Φ_λ for $[oe]$

It seems a general fact that first three are purely longitudinal.
Matching measurements and computations

- Vertical lines: Helmholtz resonances with “Dirichlet mouth”.
- Curve families: Spectral envelopes from recorded speech. The upper during MRI, the lower in anechoic chamber.
Exterior acoustics (1)

Until now, the exterior space acoustic have been omitted, and the Dirichlet boundary condition at mouth has been used instead.

The mixed resonance of a nasal [a] at 1625Hz. Both the vocal tract and the idealised, semi-cylindrical exterior domain ($d = 30 \text{ cm}$) are excited.

Neglecting the exterior acoustics leads to a frequency-dependent discrepancy of ≈ 2.5 semi-tones between VT resonance measurements from speech and Helmholtz computations.
Exterior acoustics (2)

For speech, we need “High Fidelity” in the vocal tract volume but in the exterior acoustic space, “Low Adultery” will suffice.

The mixed resonance of [a] is found at 1625Hz when using 8900 D.o.F. for the exterior domain.

The mixed resonance of [a] is found at 1637Hz when using 26 D.o.F. for the exterior domain.
Exterior acoustics (3)

Typical numbers of exterior space reduction for the Helmholtz problem:

<table>
<thead>
<tr>
<th></th>
<th># of tetr. F.E.</th>
<th>D.o.F</th>
<th>Reduced D.o.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocal tract</td>
<td>115000</td>
<td>26600</td>
<td>26600</td>
</tr>
<tr>
<td>Exterior space</td>
<td>38500</td>
<td>8900</td>
<td>26</td>
</tr>
</tbody>
</table>

The dimension reduction 8900 → 26 in degrees-of-freedom of the exterior acoustics produces an error of ≈ 0.8 semi-tones in the three lowest pure resonances $R_1, R_2,$ and R_3 of the vocal tract.

“Pure” vocal tract resonance means that the exterior acoustic space is not significantly excited.
Partial dimension reduction (1)

Let us start with a dissipative BCS that is first splitted spatially into two subdomains: interior and exterior.

- $\Pi : L^2(\Gamma_1) \rightarrow \mathbb{C}^n$ is a finite rank co-isometry. For example, it may map to averages on disjoint parts of the interface Γ_1.
- The orthogonal projection $\Pi^* \Pi$ removes energy from the feedback loop, thus preserving passivity.
Partial dimension reduction (2)

- The new endosystem has finite-dimensional internal input and output spaces.
- Finally, the exosystem is replaced by a finite-dimensional approximate system.
• Mathematics is difficult.
• Applications require a lot of hard work.
• Applied mathematics is difficult and requires a lot of hard work.
A. Hannukainen, T. Lukkari, J. Malinen, and P. Palo.

A. Aalto and J. Malinen.

T. Lukkari and J. Malinen.

A. Aalto, T. Lukkari, and J. Malinen.

Thanks for your patience. Any questions?

http://speech.math.aalto.fi