#### System Theory of Speech

#### Antti Hannukainen, Jarmo Malinen, Antti Ojalammi

Aalto University, School of Science, Department of Mathematics and Systems Analysis

> Lorentz Center May 23-26, Leiden

#### Human voice production

#### Simplified vowel production:



Flanagan, J. L. (1972). Speech Analysis Synthesis and Perception, Springer-Verlag.

#### Notable facts:

- Vocal tract (VT) shape changes, and there are feedbacks.
- Not all speech sounds originate in vocal folds.

#### Modelling speech requires data

- Simultaneous speech recording during 3D MR imaging.
- Geometry for the computational model is constructed from MR images by custom software.





#### Geometries of Finnish vowels



PDE's of acoustics should be solved in these domains.

#### Multiphysics of vowel production, Dico



◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 のへで

# Wave equation model ("Dirichlet mouth")

Equations for the velocity potential  $\phi = \phi(\mathbf{r}, t)$ :

$$\begin{cases} \phi_{tt} = c^2 \Delta \phi & \text{ir} \\ \phi(\mathbf{r}, t) = 0 & \text{a} \\ \frac{\partial \phi}{\partial \nu}(\mathbf{r}, t) + \alpha \phi_t(\mathbf{r}, t) = 0 & \text{o} \\ c \frac{\partial \phi}{\partial \nu}(\mathbf{r}, t) + \phi_t(\mathbf{r}, t) = 2\sqrt{\frac{c}{\rho A(0)}} u(\mathbf{r}, t) & \text{a} \end{cases}$$

in VT volume  $\Omega$ at mouth opening  $\Gamma(\ell)$ on VT walls  $\Gamma$ at vocal folds  $\Gamma(0)$ .

This is a passive boundary node (with output omitted).

- c speed of sound
- $\rho\,$  density of air
- lpha boundary dissipation coefficient
- u exterior normal
- A(0) area of  $\Gamma(0)$



#### Cheaper model for tubular domains?

Let  $\Omega \subset \mathbb{R}^3$  be a variable diameter, curved tube. Now, is there an approximate equation for the averages

$$ar{\phi}(s,t) := rac{1}{A(s)} \int_{\Gamma(s)} \phi dA \quad ext{ for } \quad s \in [0,\ell]$$

of the velocity potential  $\phi$  given by the wave equation on  $\Omega$ ?

YES, the generalised Webster's horn model for longitudinal dynamics!

 $\ell \text{ length of } \Omega$   $\gamma(\cdot) \text{ centreline of } \Omega$   $\Gamma(s) \text{ slice of } \Omega, \text{ normal }$   $\text{ to } \gamma(\cdot) \text{ at } s$  $A(s) \text{ area of } \Gamma(s)$ 



#### Webster's lossy resonator

Equations for the Webster's velocity potential  $\psi = \psi(s, t)$ :

$$\begin{cases} \psi_{tt} = \frac{c(s)^2}{A(s)} \frac{\partial}{\partial s} \left( A(s) \frac{\partial \psi}{\partial s} \right) - \frac{2\pi \alpha W(s)c(s)^2}{A(s)} \frac{\partial \psi}{\partial t} & \text{in vocal tract } s \in [0, \ell] \\ \psi(\ell, t) = 0 & \text{at mouth } s = \ell \\ -c\psi_s(0, t) + \psi_t(0, t) = 2\sqrt{\frac{c}{\rho A(0)}} \tilde{u}(t) & \text{on vocal folds } s = 0. \end{cases}$$

This is a passive strong boundary node (with output omitted).





▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

From now on, we restrict ourselves to the conservative case  $\alpha = 0$ .

Approximation by Webster's model? (1)



Don't worry about the formulas for functions F, G, H.

Approximation by Webster's model? (2)



To make a long story short:  $F + G + H \rightarrow 0$  as  $\phi - \overline{\phi} \rightarrow 0$ , giving an *a posteriori* estimate for the approximation error  $\psi - \overline{\phi}$ .

### Transmission graphs

Any finite number of passive strong boundary nodes can be coupled to a *transmission graph* that is passive and internally well-posed as well.

Treatment of the subglottal acoustics using Webster's model on subdividing bronchi, bronchioles, and alveoli?



We just use Webster's model for exponential horn in "Dico".

#### Resonance equations

*Ceteris paribus*, the measured resonance structure from vowel sounds should match the computed resonances from the model.

Wave Equation  $\rightarrow$  Helmholtz equation:

 $\lambda^2 \Phi_{\lambda} = c^2 \Delta \Phi_{\lambda}$  in VT volume  $\Omega$ .

Webster's Equation  $\rightarrow$  time-independent Webster:

$$\lambda^2 \psi_{\lambda} = \frac{c^2 \Sigma(s)^2}{A(s)} \frac{\partial}{\partial s} \left( A(s) \frac{\partial \psi_{\lambda}}{\partial s} \right) \quad \text{ for } \quad s \in [0, \ell].$$

- The boundary conditions for the time-variant PDE give the corresponding boundary conditions of the resonance PDE.
- Discrete resonance frequencies:  $R = \frac{1}{2\pi} Im(\lambda)$ .

### Helmholtz mode shapes $\Phi_{\lambda}$ for [oe]



It seems a general fact that first three are purely longitudinal.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Matching measurements and computations



- Vertical lines: Helmholtz resonances with "Dirichlet mouth".
- Curve families: Spectral envelopes from recorded speech. The upper during MRI, the lower in anechoic chamber.

## Exterior acoustics (1)

Until now, the exterior space acoustic have been omitted, and the Dirichlet boundary condition at mouth has been used instead.

The mixed resonance of a nasal [a] at 1625Hz. Both the vocal tract and the idealised, semicylindrical exterior domain (d = 30 cm) are excited.



Neglecting the exterior acoustics leads to a frequency-dependent discrepancy of  $\approx 2.5$  semi-tones between VT resonance measurements from speech and Helmholtz computations.

### Exterior acoustics (2)

For speech, we need "High Fidelity" in the vocal tract volume but in the exterior acoustic space, "Low Adultery" will suffice.



The mixed resonance of [a] is found at 1625Hz when using 8900 D.o.F. for the exterior domain.



The mixed resonance of [a] is found at 1637Hz when using 26 D.o.F. for the exterior domain.

くしゃ 本理 ディヨ ディヨ うらの

### Exterior acoustics (3)

Typical numbers of exterior space reduction for the Helmholtz problem:

|                | # of tetr. F.E. | D.o.F | Reduced D.o.F. |
|----------------|-----------------|-------|----------------|
| Vocal tract    | 115000          | 26600 | 26600          |
| Exterior space | 38500           | 8900  | 26             |

The dimension reduction  $8900 \rightarrow 26$  in degrees-of-freedom of the exterior acoustics produces an error of  $\approx 0.8$  semi-tones in the three lowest pure resonances  $R_1, R_2$ , and  $R_3$  of the vocal tract.

"Pure" vocal tract resonance means that the exterior acoustic space is not significantly excited.

## Partial dimension reduction (1)

Let us start with a dissipative BCS that is first splitted spatially into two subdomains: interior and exterior.



- Π : L<sup>2</sup>(Γ<sub>1</sub>) → C<sup>n</sup> is a finite rank co-isometry. For example, it may map to averages on disjoint parts of the interface Γ<sub>1</sub>.
- The orthogonal projection Π\*Π removes energy from the feedback loop, thus preserving passivity.

### Partial dimension reduction (2)



 The new endosystem has finite-dimensional internal input and output spaces.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Finally, the exosystem is replaced by a finite-dimensional approximate system.

#### Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Mathematics is difficult.
- Applications require a lot of hard work.
- Applied mathematics is difficult and requires a lot of hard work.

### "Opera magna"



#### A. Hannukainen, T. Lukkari, J. Malinen, and P. Palo.

Vowel formants from the wave equation. Journal of the Acoustical Society of America, 122(1):EL1–EL7, 2007.



#### A. Aalto, D. Aalto, J. Malinen, and M. Vainio.

Modal locking between vocal fold and vocal tract oscillations. arXiv:1211.4788 (submitted), 2013.



#### A. Aalto and J. Malinen.

Composition of passive boundary control systems. Mathematical Control and Related Fields, 3(1):1–19, 2013.



#### T. Lukkari and J. Malinen.

Webster's equation with curvature and dissipation. arXiv:1204.4075 (submitted), 2013.



#### A. Aalto, T. Lukkari, and J. Malinen.

Acoustic wave guides as infinite-dimensional dynamical systems. ESAIM: Control, Optimisation and Calculus of Variations (to appear), 2014.



D. Aalto, O. Aaltonen, R.-P. Happonen, P. Jääsaari, A. Kivelä, J. Kuortti, J. M. Luukinen, J. Malinen,

T. Murtola, R. Parkkola, J. Saunavaara, and M. Vainio.

Large scale data acquisition of simultaneous MRI and speech. Applied Acoustics (to appear), 2014.

#### The End

# Thanks for your patience. Any questions?

http://speech.math.aalto.fi