On the Art of Speech (and) Modelling

Antti Ojalammi

Aalto University School of Science Department of Mathematics and Systems Analysis

http://speech.math.aalto.fi

Mathematical Café, 26.11.2015

Aalto University School of Science

Vocal Tract Anatomy

As a Filter

Vocal tract, [u]

As a Filter

Vocal tract, [u]

Introduction

Vowels

Finnish vowels

Magnetic Resonance Imaging

Data Acquisition

MRI machine

- Non-intrusive, safe 3D imaging.
- VT geometry automatically extracted from the sequence.

Head coil

Sagittal plane

Sound in MRI

Collecting speech and noise

Faraday cage

Sound in MRI(2)

Waveguides, speech and noise channels

Setup demonstration

Pipeline

Validation

Blue: MRI recordings, green: frequency sweep, red: anechoic recordings

- Peaks correspond to formants/resonances.
- Discrepancy between anechoic and MRI measurements.

Sweeping the frequency range

Webster's Equation

- Used for speech synthesis research at the acoustics lab.
- Parametrise the centreline by $s \in [0, 1]$

$$\frac{1}{c^{2}\Sigma(s)^{2}}\frac{\partial^{2}\phi}{\partial t^{2}} - \frac{1}{A(s)}\frac{\partial}{\partial s}\left(A(s)\frac{\partial\phi}{\partial s}\right) = 0,$$

$$\phi = \text{Velocity potential},$$

$$A(s) = \text{Area of slice at } s,$$

$$\text{Rest} = \text{Don't worry about it}.$$

Resonances

 The resonant frequencies are related to the eigenvalue problem: Find (λ, u) ∈ C × V such that

$$c^2 \Delta u = \lambda^2 u,$$

where V is the solution space (depends on the b.c's).

 Model the head coil to account for mixed modes.

Pressure distribution for the vowel [ae]. Mixed resonance structure.

Geometries

- VT geometry and exterior acoustic space connected via a fixed interface (non-matching grids possible).
- Effect of exterior space can be pre-computed to some extent.

Interface in green.

Interface

- The interface is automatically stitched to the VT geometry.
- Project the edge polygons (red) into two dimensions and triangulate.
- Solve a 2D Poisson's equation to obtain smooth depth interpolation.
- Use Nitsche's method to connect the exterior acoustic space.

Testing

4th mode for [a].

Some modes for [a], [i], [u]

Teeth Alignment

Markers visible in MRI data

Dental mould with markers, CT scanned

Art (2)

Sculptris + Blender

12 3D-printed models, different modifications

Exhibition (2)

Exhibition (3)

Modifications: normal, long, short, wide

Video installation

More Resonances

u_short, n = 1, F = 312 Hz	u_base, n = 1, F = 237 Hz	u_long, n = 1, F = 201 Hz
u_short, n = 2, F = 907 Hz	u_base, n = 2, F = 823 Hz	u_long, n = 2, F = 786 Hz
Real Providence		

Testing the effects of VT length

Vowel Space

Through the eyes of phonetics

The Future

...and Beyond

- More exhibitions, math and acoustics,
- Bigger papers and results,
- Better endings for presentations.

Aalto University School of Science

http://speech.math.aalto.fi

Collaborators:

Department of Mathematics and Systems Analysis, Aalto University School of Science, Department of Signal Processing and Acoustics, Aalto University, Institute of Behavioural Sciences, University of Helsinki, Department of Oral and Maxillofacial Surgery, University of Turku, Department of Oral and Maxillofacial Diseases, Turku University Hospital, and Medical Imaging Centre of Southwest Finland at Turku University Hospital.