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Chapter 1

Introdution

1.1 Human voie prodution

Figure 1.1 shows a shemati diagram of the human voal mehanism. In a

simpli�ed model of human voie prodution, lungs an be onsidered as a large

air reservoir in onstant pressure. This pressure is aused by the breathing

musles ontrating the lungs. The air esapes from the lungs through a hannel

onsisting of two parts, the trahea and the voal trat (VT). These parts are

separated by a slit-like narrowing, formed by voal ords. The ori�e between

the ords is alled the glottis. At the other end, the voal trat is terminated by

the lips. The voie also has a seondary transmission hannel, namely the nasal

trat diverging from the VT at velum and ending at the nostrils. The velum

opening regulates the in�uene of the nasal oupling.

In the basi on�guration the voie is generated by the �ow indued vibra-

tions of the voal ords whih at like a valve, periodially opening and losing

the glottis, and thereby generate short �ow pulses. This osillation ours be-

ause the ords have no (stable) equilibrium states for a �ow exeeding a ertain

value, known as the phonation threshold. When the glottis is losed, there is

a transglottal pressure di�erene, that will eventually fore the glottis open.

After the glottis opens, the �ow aelerates and � due to Bernoulli e�et �

the loal pressure at the glottis drops. The pressure drop suks the voal ords

together again. The glottal �ow pulses exite the aoustis of the air olumn in

the voal trat. The aousti voie signal is �ltered by the voal trat and the

sound signal is eventually transmitted to the exterior spae through the mouth

and/or the nostrils.

1.2 Speeh sounds

The geometry of the VT varies during phonation due to the movement of the

artiulators, of whih the most important ones are the lips, jaw, tongue and

velum. Let us brie�y introdue the prodution mehanisms of typial speeh

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Shemati diagrams of the human voie mehanism and funtional

omponents of the voal trat by Flanagan (1972)

sounds in the General Amerian (GA) dialet (see Flanagan (1972)).

In vowel prodution, the VT is more or less open at every point, and the

sound is transmitted prinipally through mouth and, to a lesser degree, through

nostrils. The vowels an be lassi�ed by two properties of the on�guration, the

position of the tongue hump (front, entral and bak) and degree of onstrition

of the VT at mouth. Altering the VT geometry has an e�et on the aousti

eigenfrequenies of the air olumn in the VT. In phonetis these frequenies are

known as the formant frequenies.

In the English language the prodution of some onsonants resembles vowel

prodution. For example the prodution of the glides [w, j℄ pronouned as

in words �we� and �you� respetively, is very lose to the prodution of [u℄

and [i℄ (pronouned as in words �boot� and �eve�). Also the prodution of the

semivowels [r, l℄ pronouned as in �read� and �let� resembles that of vowels. The

only di�erene is that the tongue is up reating a onstrition at the mouth.

Also the nasals [m, n, ℄ resemble vowels to some extent. They are produed

by losing the voal trat � either by lips in [m℄, the tip of the tongue against

the hard palate in [n℄ or the bak of the tongue against the soft palate [℄ �

and holding the nasal trat widely open. The sound is then transmitted only

through nostrils.
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One lass of the physially more ompliated onsonants are the friatives

[v, f, ð, Θ, z, s, x, s, h℄ pronouned as in words �vote�, �for�, �then�, �thin�,

�zoo�, �see�, �azure�, �she� and �he� respetively. The friatives are produed

by onstriting the VT at ertain point so that turbulent �ow is formed at the

onstrition. For example [v℄ and [f℄ are produed by onstriting the mouth

opening by the teeth and the lower lip. The di�erene between these two is that

voiing (that is, voal ord osillation with losure) ours during the prodution

of [v℄ whih is not the ase during the prodution of [f℄. This way friatives an

be further lassi�ed into voied [v, ð, z, x℄ and their voieless pairs [f, Θ, s, s℄.

The so alled glottal friative [h℄ has no voied ounterpart.

Another lass are the stop onsonants [p, t, k, b, d, g℄, pronouned as in

words �pay�, �to�, �key�, �be�, �day� and �go� respetively. They are produed by

initially losing the VT at ertain point and letting the lungs build up a pressure

behind the losure. This pressure is then abruptly released by opening the

losure. For example, when pronouning [d℄ or [t℄, the VT is initially losed by

pressing the tongue against the palate. Like friatives, also the stop onsonants

an be subategorized into voied [b, d, g℄ and voieless [p, t, k℄, depending on

whether voiing ours during the pressure buildup.

Of speeh sounds not inluded in GA speeh, let us present few examples

whose prodution di�ers from any GA sound. One example is the Finnish [r℄,

whih is produed by letting the tip of the tongue vibrate against the hard

palate. Another one is the Frenh (or guttural) [r℄ whih is produed by letting

the velum vibrate against the bak of the tongue.

1.3 Modelling human phonation

The demand for phonation models has inreased onstantly during the last

�fty years. Appliations of suh models an be found in telephony and speeh

synthesizing tehnologies as well as some medial sienes suh as surgery (see,

i.e., Svá£ek and Horá£ek (2006)). Perhaps the best known lass of models

onsist of a low-order mass-spring model of glottis, oupled to some kind of

stati aousti load representing the voal trat (see, e.g., Ishizaka and Flanagan

(1972)). The model onstruted in this thesis also falls under this ategory.

These models are suitable for modelling the prodution of vowel (and vowel-

like) speeh sounds. Physially more ompliated speeh sounds, suh as stop

onsonants and friatives are outside these models' range.

One approah for studying human phonation are inverse �ltering tehniques

(see, i.e., Alku (1992) and Alku et al. (2006)) whih onstitute a demand for

a prior model of the glottis signal. Suh signal models are presented in e.g.

Fant (1979) and Fant et al. (1986).

One of the earliest widely known physial glottis models is presented by

Ishizaka and Flanagan (1972). Their glottis model is symmetri and it onsists

of two masses per ord. The aerodynami fore ating on glottis takes into

aount the Bernoulli e�et and a visous pressure drop aording to the Hagen-

Poiseuille equation. Their VT-model onsists of four ylindrial tube-elements.
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Figure 1.2: Blok diagram of a model with a feedbak on�guration as in the

model by Ishizaka and Flanagan (1972)

Figure 1.3: The blok diagram of the model presented in this paper

The VT pressure at the glottis end is taken into aount when evaluating the

glottal �ow. This kind of feedbak on�guration is illustrated in Fig. 1.2.

A more reent model of phonation is presented by Titze (2008). There the

e�et of the VT feedbak to both glottal �ow and voal fold mehanis is studied

�rst separately and then with a omputational model.

1.4 Outline of this work

Fig. 1.3 shows the blok diagram of the model onstruted in the present work.

Our design philosophy is to keep the model simple enough to be mathematially

tratable. We want all the bloks to be physially realisti on a subsystem level.

However, onsidering the whole system, there are some model simpli�ations on

the subsystem level that would exlude eah other.

First, in Chapter 2, a mass-spring model of the glottis is developed. The

geometry of the model as well as the equivalent aerodynami fores are highly

simpli�ed. The model has two degrees of freedom per ord and no symmetry

assumption is made. This means that both voal ords are allowed to vibrate

independently. Thus, modelling of the e�et of nonsymmetri parameters is

possible. For the losed glottis, a nonlinear spring fore is applied. This fore
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is a simple version of the Hertz model of impat fore as in another glottis

model by Horá£ek et al. (2005). This paper and its predeessor (Horá£ek and

�ve (2002)) have proven valuable referenes onerning also many other glottis

model details.

This work also presents a model of the glottal �ow. This model takes into

aount visous pressure losses in the glottis and the voal trat. It also takes

into aount the inertane of the VT. However, in the derivation of the �ow

equation, it is assumed that the air is inompressible. That is, the mass and

volume �ow through every ross-setion in the VT is onstant at a given moment.

At the end of Chapter 2, the behaviour of the glottis model is investigated by

numerial simulation with di�erent parameter on�gurations inluding a sim-

ulation with asymmetri glottis parameters. In these simulations there is no

feedbak from the VT diretly to the mass-spring model. However, the �ow

model impliitly ontains an inertive ounter pressure from the voal trat,

whih is always present.

In Chapter 3 the voal trat model is presented. The model is a Webster's

horn equation model whih approximates the solution of the 3-D wave equation

averaged over the VT ross-setions (for an early treatment of the Webster's

equation, see Chiba and Kajiyama (1941)). Here we use a more general vari-

ant of the Webster's equation, derived by Lukkari and Malinen (2008b). The

urvature of the tube is taken into aount as a orretion fator for the speed

of sound. However, energy dissipation at the tube walls is not taken into a-

ount here. A solver based on the Finite Element Method is written for the VT

model. At the end of Chapter 3, the lowest formant frequenies and orrespond-

ing pressure/veloity potential distributions are omputed from an eigenvalue

equation. The formants are ompared to those given by a 3-D wave equation

model by Hannukainen et al. (2007). These two models are onstruted by using

exatly the same magneti resonane imaging (MRI) data for the VT, making

this omparison reasonable.

In Chapter 4, the glottis and VT models are oupled together. For om-

parison, a simulation without the VT feedbak is run. Then the e�et of the

feedbak is investigated �rst for the atual VT geometry and then by using a

straight tube as the resonator. The length of the tube is varied for tuning the

formant frequenies.

It is partiularly interesting to see what happens when the lowest formant

frequeny rosses the glottal fundamental frequeny or its lowest multiples. This

has been studied also by Titze (2008) and Hatzikirou et al. (2006) with a model

similar to the one in Ishizaka and Flanagan (1972).



Chapter 2

The glottis model

In this hapter, we shall introdue the two bloks on the left in the blok diagram

(Fig. 1.3). First, we shall onstrut the mass-spring model of glottis in Setion

2.1. Then, a 1-D model of the (inompressible) glottal �ow with visous pressure

loss is onstruted in Setion 2.2. The oupling from the �ow to the glottis model

through the load fore F is developed in Setion 2.3.

The geometry of the voal folds is as simple as possible. There is little

point in re�ning the model geometry, when many of the material parameters

are more or less negleted, and the aerodynamis in the �ow model are based

on somewhat harsh laminarity and inompressibility assumptions. The same

applies also for the omission of trigonometri funtions in the formulas of the

load fore F .

Simulations will be performed for the glottis model before it is onneted to

the voal trat.

2.1 The mehanis of the glottis model

We onsider a physial system shown in Fig. 2.1. The system onsists of two

wedge-shaped vibrating bodies having two degrees of freedom eah. The system

is pratially two-dimensional, meaning that all ross-setions in the glottis are

retangular. The width of the voal ords and the hannel between them (to

the diretion perpendiular to the paper) is denoted by h.
This system an be replaed by an equivalent system that onsists of alto-

gether six masses, three eah side. These three masses are attahed to a rod

of length L, so that there is one mass in both ends and one at the midpoint.

This rod is onneted to the wall of the hannel with two sets of springs and

dampers. The dampers are loated at the endpoints of the rod whereas the

springs are loated at points whose distane from the midpoint is l. The reason
for the plaement of the springs is that the tuning properties are better than

if the springs would be at the endpoints of the rod as well. This will be dis-

ussed in Setion 2.4.2 in more detail. In addition, in the equivalent system

6
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Figure 2.1: The geometry of our model

there are load fores F1 and F2 that depend only on the glottal openings at the

narrow end of the glottis (point x = L) and in the wide end (x = 0), namely

∆W1 := g − w11 + w21 and ∆W2 := H0 − w12 + w22. Here g is the glottal

gap, when the displaements are zero. This gap is a ontrol parameter in the

model. When the glottis is open, F1 and F2 orrespond to the fore and moment

aused by the dynami pressure p(x, t). When the glottis is losed, there is no

air �ow. Instead of the air pressure there is a ontat fore between the voal

ords pushing the ords apart.

The equations of motion for the ords are

{

M1Ẅ1(t) + B1Ẇ1(t) + K1W1(t) = −F

M2Ẅ2(t) + B2Ẇ2(t) + K2W2(t) = F, t ∈ R
(2.1)

where Wj = (wj1 wj2)
T are the displaements of the endpoints of the jth ord

(j = 1, 2) and F = (F1 F2)
T is the external load fore. Mj is the mass matrix,

Bj is the damping matrix and Kj is the sti�ness matrix.

The equilibrium position of the masses is taken to be wji = 0, i, j = 1, 2
whih ours when there is no �ow, and onstant pressure psub at all sides of the
voal ords. Then F ≡ 0 and sine the system is at rest, that is Ẇj = Ẅj = 0,
by Eq. (2.1) we have Wj = 0.

Next we shall alulate the entries of the mass and sti�ness matries by

means of Lagrangian mehanis. First, we need to express the kineti energy Tj
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and potential energy Vj as funtions of variables wji and their time derivatives

ẇji. For the jth ord we get

Tj =
1

2
mj1ẇ

2
j1 +

1

2
mj2ẇ

2
j2 +

1

2
mj3

(

ẇj1 + ẇj2
2

)2

(2.2)

and

Vj =
1

2
kj1 (awj1 + bwj2)

2
+

1

2
kj2 (bwj1 + awj2)

2
, (2.3)

where a = L/2+l
L and b = L/2−l

L .

The Lagrangian funtion is de�ned as Lj = Tj − Vj and it satis�es the

Lagrange equations

d

dt

(

∂Lj

∂ẇji

)

−
∂Lj

∂wji
= 0, i, j = 1, 2. (2.4)

By substituting (2.2) and (2.3) into (2.4) we get the unloaded and undamped

equations of motion

{

mj1ẅj1 + mj3
ẅj1+ẅj2

4 +
(

a2kj1 + b2kj2
)

wj1 + ab(kj1 + kj2)wj2 = 0,

mj2ẅj2 + mj3
ẅj1+ẅj2

4 +
(

b2kj1 + a2kj2
)

wj2 + ab(kj1 + kj2)wj1 = 0.

Thus, the mass and sti�ness matries are

Mj =

[

mj1 +
mj3

4
mj3

4
mj3

4 mj2 +
mj3

4

]

,

Kj =

[

a2kj1 + b2kj2 ab(kj1 + kj2)

ab(kj1 + kj2) b2kj1 + a2kj2

]

.

(2.5)

Sine the dampers are loated at the endpoints of the ords, the damping

matries are diagonal

Bj =

[

bj1 0
0 bj2

]

.

Numerial values of the physial onstants are determined in Setion 2.4.2.

The damping oe�ients bji remain tuning parameters.

2.2 Glottal �ow

We denote the subglottal pressure with psub and take the pressure in the exterior
spae to be zero. We assume, that the pressure hanges along the glottis and

voal trat for three reasons. Firstly, there is a Bernoulli �ow through the mouth

with veloity vm. Seondly, there is a visous pressure loss in the glottis and
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the VT. Thirdly, the air in the VT is in aelerating (deelerating) motion when

the glottis is opening (losing) ausing an inertive pressure. Mathematially

psub =
1

2
ρv2
m + ploss(∆W1, vo) + pa, (2.6)

where pa is the pressure aelerating/deelerating the air in the VT, and ploss
is the pressure loss in the glottis and the VT. The supraglottal �ow veloity is

denoted by vo, whih is the quantity we are interested in. This pressure loss

depends on the �ow veloity and the state of the glottis through opening ∆W1.

It is here assumed that the air is inompressible in the VT too.

Reall that the pressure loss in a tube with irular ross-setion is given by

the Hagen-Poiseuille equation

dp

dx
= −

8µQ

Ar2
(2.7)

where µ is the dynami visosity of the gas (unit Pa · s), Q is the gas �ux

(m3/s), A is the tube ross-setional area, and r is the radius of the hannel.

The derivation of the Hagen-Poiseuille equation an be found in Fetter and

Waleka (1980), pages 445-448. The Hagen-Poiseuille equation is derived for a

laminar �ow in a hannel with irular ross-setion (in whih ase A = πr2)

but it an be used also for other pro�le shapes. In that ase the radius r must

be replaed with the hydrauli radius, de�ned as

rh =
2A

C
, (2.8)

where A is the area and C is the irumferene of the ross-setion of the hannel.

For a tube with irular ross-setion the hydrauli radius oinides with the

radius of the ross-setion.

The pressure loss in the VT is omputed by integrating (2.7) over the VT.

The VT geometry is presented in Setion 3.2.5. Here we need the hydrauli

radius rh whih is shown in Fig. 3.4, and the area funtion shown in Fig. 3.2.

Thus the pressure loss in the VT is

ploss,V T = vo
8µAo

π

∫ LV T

0

ds

A(s)rh(s)2
=: voCV T .

Between two parallel planes within distane H from eah other, the Hagen-

Poiseuille law is
dp

dx
= −

12µQ

hH3
. (2.9)

One way to ompute the pressure loss in the glottis would be to set H to be

the height of the hannel in the glottis, that is H = H(x, t) and integrate this

expression over the glottis. However, this pressure loss was experimentally found

to be rather mild. Therefore, motivated by Eq. (2.9), the pressure loss in the

glottis was taken to be of the form

ploss,g =
Cg

∆W 3
1

vo, (2.10)
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where the loss oe�ient Cg = 12µAoL2

h . This orresponds to a pressure loss in

a retangular tube with height ∆W1, width h and length L2, where ∆W1 << h.
Here L2 remains a tuning parameter to be determined experimentally.

Now the whole pressure loss an be written as

ploss(∆W1, vo) =

(

Cg
∆W 3

1

+ CV T

)

vo. (2.11)

Next we shall deal with the aeleration of the air in the VT. The power

aelerating/deelerating the air in the VT is paQ = paAovo. This power is

equal to the hange rate of the total kineti energy of the air olumn, that is

pa(t)Aovo(t) =
d

dt

∫

V T

1

2
ρv(r, t)2dr

=

∫

V T

ρv(r, t)v̇(r, t)dr

= vo(t)v̇o(t)ρ

∫

V T

A2
o

A(r)2
dr

∣

∣

∣

∣

dr

A(r)
= ds

= vo(t)v̇o(t)ρA2
o

∫ LV T

0

ds

A(s)
,

where A(r) = A(s) is the area of the ross-setion that ontains r and whose

distane from the glottis is s (measured along the VT enterline). Here we

used v(r, t) = Ao

A(r)vo(t) (and the same for v̇o) whih follows from the inom-

pressibility. By denoting the tube inertane by Ciner := ρ
∫ LV T

0
ds
A(s) we get

pa(t) = CinerAo · v̇o(t). Now Eq. (2.6) yields

v̇o(t) =
1

CinerAo

(

psub −
1

2
ρ

(

Ao

Am

)2

vo(t)
2 −

(

Cg
∆W 3

1

+ CV T

)

vo(t)

)

(2.12)

where the �ow veloity at the mouth vm is replaed with Ao

Am
vo, and Am =

A(LV T ) is the area of the mouth opening. The onstants Ciner and CV T are

determined by numerial integration from data presented in Figs. 3.4 and 3.2.

The subglottal pressure psub remains a ontrol parameter whih is diretly re-

lated to the average glottal volume �ow.

2.3 The load fore F

2.3.1 Aerodynami fore for the open glottis

We shall assume that the �ow is one dimensional. That is, both the �ow veloity

V = V (x, t) and the pressure p = p(x, t), where x denotes the distane from the

wide end of the glottis.

We shall use the stati version of the law of onservation of mass for inom-

pressible �ow

H(x, t)V (x, t) = H1vo, (2.13)
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where H1 is the supraglottal hannel height, whih is set so that the hannel area

oinides A(0) in the VT model developed in Chapter 3, that is H1 = A(0)/h,
where h is the hannel width. In the glottis, the height of the hannel is

H(x, t) = ∆W2(t) +
x

L
(∆W1(t)−∆W2(t)), x ∈ [0, L]. (2.14)

The pressure and veloity distributions are onneted through the ontinuity

equation

∂p(x, t)

∂x
+ ρV (x, t)

∂V (x, t)

∂x
+

∂V (x, t)

∂t
= 0, x ∈ [0, L].

However, the time derivative part is negleted here, and so we get the familiar

Bernoulli law

p(x, t) +
1

2
ρV (x, t)2 = psub (2.15)

where psub is the subglottal pressure.

Now we solve V (x, t) from (2.13), and p(x, t) from (2.15) and �nally by using

(2.14) we get

p(x, t)− psub = −
1

2
ρv2
o

H2
1

(

∆W2 + x
L (∆W1 −∆W2)

)2 (2.16)

Thus we have onneted the veloity distribution to the relative positions

of the ords and the pressure distribution to the veloity distribution. The

aerodynami load fore for the open glottis

FA =

(

FA,1
FA,2

)

, ∆W1 > 0

an now be determined by two integrals:

FA,1 + FA,2 = h

∫ L

0

(p(x, t)− psub) dx (2.17)

and

L · FA,1 = h

∫ L

0

x(p(x, t)− psub) dx− pc · h
H1

2

H0 −H1

2
, (2.18)

where pc is the supraglottal perturbation pressure from the voal trat. The area

of in�uene of pressure pc is hH1/2 (assuming the glottal gap to be negligible)

and the moment arm of the orresponding fore is (H0 − H1)/2. Here psub
is subtrated from the pressure p(x, t) beause of our assumption that wij =
0 ∀ i, j = 1, 2 is the equilibrium position under subglottal pressure psub, and
therefore fores F1 and F2 must vanish when p(x, t) ≡ psub and pc = 0.

Finally, using (2.16), the evaluation of integrals (2.17) and (2.18) yields

FA,1 + FA,2 = −
ρv2
ohL

2
·

H2
1

∆W1∆W2
(2.19)
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and

FA,1 =
ρv2
ohL

2

(

−
H2

1

∆W1(∆W2 −∆W1)
+

H2
1

(∆W1 −∆W2)2
ln

(

∆W2

∆W1

))

−

−
H1(H0 −H1)

4L
h · pc. (2.20)

Then by subtrating (2.20) from (2.19) we get

FA,2 = =
ρv2
ohL

2

(

H2
1

∆W2(∆W2 −∆W1)
−

H2
1

(∆W1 −∆W2)2
ln

(

∆W2

∆W1

))

+

+
H1(H0 −H1)

4L
h · pc. (2.21)

Note that if the supraglottal perturbation pc = 0, we get (2.20) from (2.21) by

interhanging ∆W1 ←→ ∆W2. This symmetry ould be expeted beause the

�ow diretion has no e�et on the aerodynami fores in our simple �ow model.

2.3.2 Contat fore for the losed glottis

When the glottis is losed, the aerodynami fore is zero. Instead, there is an

impat fore due to ollision of the voal ords. Horá£ek et al. (2005) model this

fore by using a slightly simpli�ed version of the Hertz model of impat fores

(see Landau and Lifshitz (1970), pages 30-35). This impat fore is of the form

fH = kH |∆W1|
3/2, when ∆W1 < 0.

In the Hertz model, the oe�ient kH depends on the material of the olliding

objets and also on their shape, more preisely the radius of urvature at the

ontat point. Therefore, the oe�ient annot be de�ned by the Hertz model in

our geometry. Despite this, using a nonlinear spring as impat fore is physially

justi�able, and we shall apply one.

Of ourse, the e�et of the ounter pressure pc does not vanish when the

glottis is losed. Together with the impat fore the load fore for the losed

glottis beomes (see Eq. (2.18) and the disussion following it)

FH =





kH |∆W1|
3/2 − H0−H1

2L
H1

2 h · pc
H0−H1

2L
H1

2 h · pc



 when ∆W1 < 0.

2.4 Numerial solution

2.4.1 Method

We have written MATLAB ode for the numerial solution of the equations

of motion (2.1) and the �ow equation (2.12). This ode an be found in

Appendix A. The ode uses the lassial fourth order Runge-Kutta (RK) method
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for the equations of motion and impliit Euler method for the �ow equation.

The load funtion F in the equations is disontinuous, and this auses prob-

lems. In addition, the aerodynami fores (2.20)-(2.21) are singular at the point

of disontinuity. We an get rid of the singularity by replaing the point of dis-

ontinuity slightly above zero. This means stopping the �ow when the glottal

gap is under a ertain threshold ǫ. Of ourse the visosity in the glottis stops

the �ow anyway, and ǫ is hosen to be so small that the �ow already is rather

low. The meaning of this trik is merely that now we an use onstant time

step length for almost every step. Beause of this we spare one matrix inversion

on every step in the FEM solver for the VT model. This makes the numerial

solution faster. The numerial solution is not sensitive to the hoie of ǫ.
Thus the load funtion for the equations of motion is pieewise de�ned

F
(

∆W1(t),∆W2(t)
)

=











FA
(

∆W1(t),∆W2(t)
)

, when ∆W1(t) > ǫ

0, when ∆W1(t) ∈ [0, ǫ]

FH
(

∆W1(t)
)

, when ∆W1(t) < 0.

Note that F has only one disontinuity at ∆W1(t) = ǫ.
So we got rid of the singularity but the disontinuity still auses a problem

in numerial solution. This is dealt with the following proedure. If at ertain

moment the glottis is open, meaning ∆W1,k > ǫ, we use only values of FA in

the next RK-step, even on the �wrong� side of the disontinuity if needed. Here

we must be areful with the hoie of the timestep length. It has to be hosen

small enough, so that the hange of ∆W1 in one step does not exeed ǫ.
If the glottis loses at the next timestep, meaning ∆W1,k+1 < ǫ, we'll inter-

polate the point where the threshold ǫ is rossed. For this we use the seond

degree interpolating polynomial for whih values ∆W1,k−1, ∆W1,k and ∆W1,k+1

are needed.

We shall demonstrate this interpolation with an example. We assume that

the threshold ǫ = 0.2 and that by using FA as load funtion we have solution

points ∆W1,3 = 0.4, ∆W1,4 = 0.3 and ∆W1,5 = 0.16667 (see Fig. 2.2). The

threshold was rossed at the step 4 → 5. Now we shall interpolate by �tting

a seond degree polynomial to the solution points and solving the point where

the threshold is rossed. In this example the point is t = 4, 772h where h is

the length of the timestep. After this we �t interpolating polynomials for every

variable and evaluate their values at t = 4, 772h and set these values for the

new solution point. On the next step FH is used as the load funtion beause

now the glottis is losed.

In this interpolation, the order of the error is O(h3) sine we use the seond
degree interpolation polynomials. In one RK-step the order of the error is O(h4).
However, the number of the steps where this interpolation is performed, does

not depend on h, but only on the length of the simulation time interval. This

means that the overall order of the error is O(h3).
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Figure 2.2: Interpolation example

2.4.2 Physial onstants

The geometry of our model is as simple as possible. Therefore we shall de-

termine the ords' total mass, stati moment, and the moment of inertia by

using a somewhat more realisti geometry than the one used for determining

the aerodynami fores. This geometry is the one used by Horá£ek and �ve

(2002). They approximated the shape of the voal fold by a paraboli funtion

a(x) = −159.861(x− 5.812 · 10−3)2 + 5.4 · 103 [m] x ∈ [0, L].

The total mass, stati moment and moment of inertia with respet to point

x = 0 an now be evaluated by integrals

m = hρh

∫ L

0

a(x) dx,

T = hρh

∫ L

0

xa(x) dx,

I = hρh

∫ L

0

x2a(x) dx,

where h is the width of the hannel and ρh is the density of the voal ords.

Now the entries of the mass matrix (2.5) an be determined through onditions

mj1 + mj2 + mj3 = m,

L
2 mj3 + Lmj1 = T,

(

L
2

)2
mj3 + L2mj1 = I, j = 1, 2.

(2.22)
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As in Horá£ek and �ve (2002) the parameters in preeding equations were

taken as follows: L = 6.8 mm, h = 18 mm and ρh = 1020 kg/m3. With these

parameters, by solving Eqs. (2.22) we get mj1 = 1.686 · 10−4 kg, mj2 = 0.595 ·
10−4 kg and mj3 = 2.531 · 10−4 kg.

The height of the hannel, whih is also the glottal gap at x = 0 when the

displaements W1 = W2 = 0, was taken as H0 = 11.2 mm. The glottal gap at

the narrowest point x = L was g = 0.4 mm, when the displaements were zero.

The air density was ρ = 1.2 kg/m3 and the dynami visosity µ = 18.7·10−6Pas.
The sti�ness oe�ient for the ontat fore was kH = 730 N/m3/2. The

subglottal pressure was psub = 800 Pa above the ambient pressure. The length

L2 in the expression of the glottal pressure loss oe�ient was 0.8 mm (see

explanation related to Eq. (2.10)).

The Laplae-transformation of the undamped (B = 0) system yields

s2MŴ (s) + KŴ (s) = F̂ (s),

where M and K are as in (2.5). The transfer funtion from F to W is

G(s) = (s2M + K)−1.

The natural (angular) frequenies of the system are the imaginary parts of the

poles of the transfer funtion. Thus, they are obtained as the roots of the

polynomial

r(s) = det(s2M + K).

However, we want to solve an inverse problem. We want to �t the sti�ness

oe�ients k1 and k2 so that they orrespond to desired natural frequenies f1

and f2. Thus we want to solve equations

{

r(2πif1) = 0
r(2πif2) = 0

(2.23)

with respet to sti�ness oe�ients k1 and k2. Here the problem was that a

real solution did not always exist if the natural frequenies were lose to eah

other. This problem is solved by adjusting the parameter l, whih is the distane

between the midpoint x = L/2 and the springs. When l = 0.35L the sti�ness

oe�ients were real in all simulated ases.

Bounds for the damping parameters bji were experimentally found so that

the damped system was stable but not overdamped, meaning that the osillation

did not stop one it had started. We used values bji = 0.1 Nm/s for i, j = 1, 2,
when there was no feedbak from the voal trat.



CHAPTER 2. THE GLOTTIS MODEL 16

2.4.3 Results

First we set f1 = 100 Hz and f2 = 105 Hz. Solving equations (2.23) with these

frequenies gives k11 = k21 = 124 N/m and k12 = k22 = 69 N/m. Fig. 2.3

shows the eigenmodes of the ords vibrating in vauo and their orresponding

eigenfrequenies with these parameters.

Figure 2.3: Eigenmodes and orresponding eigenfrequenies for the ords vi-

brating in vauo

The timestep in all simulations was 0.02 ms. First time domain simulation

was performed with all-symmetri parameters and initial onditions. The results

of this simulation are shown in Fig. 2.4. The upper piture shows the positions

of the ords in the narrow end of the glottis (x = L). The piture in the middle

shows the osillation of the lower ord at the wide end of the glottis (x = 0).
The lowest piture shows the glottal area,

Ag =

{

h∆W1(t), when ∆W1(t) > 0,
0, when ∆W1(t) ≤ 0.

The behaviour of the model is regular. The frequeny of the osillations is

F0 = 118 Hz and the open quotient (OQ) is 0.63, meaning that the glottis is

open 63 % of the time. The average glottal volume �ow is 1
T

∫ T

0
Aovout(t)dt =

0.30 l/s, where T is one period duration. Fig. 2.5 shows the glottal area funtion

and the �ow through the glottis during one open phase.

We also arried out a simulation with non-symmetri masses. We set the

mass m21 20 % greater than m11. Other parameters were as in the �rst simula-

tion. The positions of the ords in the narrow end of the glottis are shown in the

upper piture in Fig. 2.6. The asymmetry auses a phase di�erene between

the ords' osillation, and redues the osillation frequeny to 114 Hz. The

OQ is again 0.63 and the average glottal volume �ow is 0.31 l/s. The phase

di�erene is illustrated in the lower pitures whih show the phase diagrams

(w11(t), w12(t)) and (w12(t), w22(t)). However, besides the frequeny, the only

thing that an be �heard� from the glottal behaviour is the glottal area funtion,

and it is not remarkably in�uened by the asymmetry.
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Figure 2.4: Results of the symmetri simulation; f1 = 100 Hz, f2 = 105 Hz

Figure 2.5: The output veloity and the glottal area funtion during one pulse.

The simulation parameters are as in the �rst simulation (Fig. 2.4).
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Figure 2.6: Results of the asymmetri simulation. The mass m21 is 20 % greater

than m11. The ord nr. 2 orresponds to the thiker line in the upper piture.

2.4.4 Parameter identi�ation of the F-model

Fant (1979) used a three-parameter model (often referred to as the F-model) to

desribe the glottal �ow pulse. This model was later improved by Fant et al.

(1986) (known as the LF-model). They removed the abrupt �ow termination in

the F-model and added an exponential deay to the end of the �ow derivative.

The parameters for these pulses are determined by inverse �ltering of measure-

ments of the volume veloity at the lips (see, i.e., Alku et al. (2006) and the

referenes therein).

In our model the end of the pulse is smooth (that is, ontinuously di�eren-

tiable). Despite this, the pulse has more resemblane to the F-model. Therefore

we shall ompare our veloity pulse to the three-parameter F-model pulse �tted

into our pulse. These pulses are presented in Fig. 2.7.

The glottal volume veloity pulse in Fant (1979) onsists of two piees, a

rising and a falling branh:

U(t) =

{

1
2U0(1− cos(ωt)), when t ∈ (T1, Tmax),

U0

(

K cos
(

ω(t− Tmax)
)

−K + 1
)

, when t ∈ [Tmax, T2).

The three parameters are the peak value U0, the pulse rise frequeny ω =
π

Tmax−T1

, where T1 is the time, when glottis opens (T1 = 0 in the piture) and

Tmax is the peak time. The third parameter is the steepness fator for the

falling branh K =
(

1− cos
(

ω(T2 − Tmax)
))−1

, where T2 is the time, when

glottis loses again.
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In Fig. 2.7 there is the output volume veloity pulse (the same pulse as

in Fig. 2.5) and the Fant-model pulse that is �tted to our pulse as desribed

above. The parameters used for �tting are also shown in the piture.

Figure 2.7: The output volume veloity pulse given by our model and a �tted

Fant-model pulse.



Chapter 3

The voal trat model

Our purpose is to onnet our glottis model to an aousti load whih is modelled

by the Webster's equation.

Consider �rst the solution of the wave equation for the veloity potential.

Sine we are handling a tube-like domain, we know that the wave motion prop-

agates mainly in the diretion of the tube. This motivates us to study only the

solution's average over eah ross-setion of the tube. Our goal is to write an

equation approximating the behaviour of this averaged solution, that would be

simpler than the 3-D wave equation. This equation is known as the Webster's

horn equation.

A omplete derivation of this equation an be found in Lukkari and Malinen

(2008b). They also take into aount the urvature of the tube, whih auses

a orretion fator for the speed of sound. The derivation of the Webster's

equation with urvature will be outlined here.

Before onneting the glottis model and the VT model together, the formant

frequenies and orresponding pressure distributions will be omputed in this

hapter. These results an be ompared with a 3-D wave equation model by

Hannukainen et al. (2007). This omparison is reasonable beause the models

are onstruted by using the same data for the VT-geometry.

3.1 The Webster's equation

3.1.1 Preliminaries

We are looking for an approximate solution to the wave equation



















Φtt = c2∆Φ, in Ω,

Φt + θc∂Φ
∂ν = 0, on Γ1,

∂Φ
∂ν = 0, on Γ2,
∂Φ
∂ν = u, on Γ3,

(3.1)

20
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where Ω is the interior of the voal trat, Γ1 is the mouth opening, Γ2 denotes

the walls of the voal trat, and Γ3 is a ontrol surfae above the glottis. The

funtion Φ is a veloity potential, that is, a funtion satisfying −∇Φ = v.

The oe�ient θ in the mouth boundary ondition is the normalized aousti

resistane � a dimensionless oe�ient regulating the radiation resistane at

lips.

We shall begin with a path γ : [0, LV T ] → R
3, whih is parameterized by

its arh length, LV T being the length of the voal trat. This is the enterline

of our urved tube. We de�ne the urvature of the path at point γ(s) by

κ(s) := ||γ′′(s)||.
An orthonormal oordinate system is �xed to every point of γ. The three

unit vetors are de�ned by

t(s) := γ′(s), n(s) :=
t
′(s)

κ(s)
and b(s) := t(s)× n(s).

The vetor t(s) is alled the tangent vetor, n(s) is the normal vetor and b(s)
is the binormal vetor. This orthonormal oordinate system is alled the Frenet

frame and it is a right hand oordinate system for R
3 at all points of the urve,

where κ(s) > 0. In the derivation of the Webster's equation it is assumed that

κ(s) > 0 ∀ s ∈ [0, LV T ].
Next we shall form the tube around the enterline γ. To every point γ(s)

we attah a γ(s)-entered dis with radius R(s), whih lies on the plane whose

normal vetor is t(s). This dis is denoted by Γ(s) and it is parameterized with

polar oordinates by using vetors n(s) and b(s) as the basis vetors for the

plane. Thus the tube representing the voal trat an be written in parameter-

ized form

Ω =
{

γ(s) + r cos θn(s) + r sin θb(s)
∣

∣ s ∈ [0, LV T ], r ∈ [0, R(s)), θ ∈ [0, 2π)
}

.

The parameters (s, r, θ) an be used as oordinates in the tube and heneforth

they are alled the tube oordinates. We make a standing assumption

η(s) := R(s)κ(s) < 1 ∀s ∈ [0, LV T ]

whih says that the tube does not fold onto itself guaranteeing that the oordi-

nate transformation (s, r, θ) 7→ (x, y, z) is bijetive. The number η(s) is alled

the urvature ratio.

3.1.2 The derivation of the Webster's equation

As mentioned before, a omplete derivation will not be presented here, and the

readers looking for one are referred to Lukkari and Malinen (2008b). First, it is

assumed that Φ is the solution of (3.1). Then the averaged solution is de�ned as

Φ(s, t) :=
1

A(s)

∫

Γ(s)

ΦdA, (3.2)

where A(s) = πR(s)2.



CHAPTER 3. THE VOCAL TRACT MODEL 22

The next steps in the derivation of the Webster's equation in Lukkari and

Malinen (2008b) are rather lengthy and would require muh more preliminary

work, so unfortunately some of the de�nitions presented here are not very well-

motivated. After writing the wave equation in integral form and using the

divergene theorem, Neumann boundary onditions on the walls of the VT, a

funtion L(·, ·) is de�ned by

L(s0, s1) :=

∫

Γ(s1)

∂Φ

∂s
dA−

∫

Γ(s0)

∂Φ

∂s
dA−

∫ s1

s0

(

∫

Γ(s)

1

c2Ξ2

∂2Φ

∂t2
dA

)

ds, (3.3)

where Ξ(s, r, θ) := (1− rκ(s) cos θ)
−1

is the urvature fator. To gain some

motivation for this de�nition, let us note that the �rst two terms here an be

interpreted as the most signi�ant term of ∆Φ
Ξ integrated over the piee of the

tube between Γ(s0) and Γ(s1).

To obtain the desired equation it is neessary to study the limit lims′→s
L(s,s′)
s′−s .

In Lukkari and Malinen (2008b) it is shown that (under ertain smoothness as-

sumptions) we have for the limit

lim
s′→s

L(s, s′) =

∫

Γ(s)

1

Ξ
∇

(

1

Ξ

)

· ∇ΦdA. (3.4)

The right hand side of (3.4) is the residual of ∆Φ
Ξ that was not inluded in the

de�nition of L. It is assumed to be small and it is inluded in the error term.

Next, this limit of L is alulated starting from the de�nition (3.3).

The �rst two terms in (3.3) are dealt with by showing that for the averaged

solution (3.2) it holds that

A(s)
∂Φ

∂s
= −A′(s)Φ +

∂

∂s

(

∫

Γ(s)

ΦdA

)

= −A′(s)Φ +

∫

Γ(s)

∂Φ

∂s
dA+

A′(s)

2π

∫ 2π

0

Φ(s,R(s), θ)dθ.

It now diretly follows that

∫

Γ(s)

∂Φ

∂s
dA = A(s)

∂Φ̄

∂s
+A′(s)

(

Φ̄(s)−
1

2π

∫ 2π

0

Φ(s,R(s), θ)dθ

)

. (3.5)

Note that the expression inside the parenthesis is a di�erene of two means of

Φ, on Γ(s) and ∂Γ(s), respetively.
For the last term in (3.3) the limit of the desired form is easy to see and
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thus, by using (3.5) we get for the limit

lim
s′→s

L(s, s′)

s′ − s
=

∂

∂s

(

∫

Γ(s)

∂Φ

∂s
dA

)

−
1

c2
∂2

∂t2

(

∫

Γ(s)

Φ

Ξ2
dA

)

=
∂

∂s

(

A(s)
∂Φ̄

∂s

)

−
1

c2
∂2

∂t2

(

∫

Γ(s)

Φ

Ξ2
dA

)

(3.6)

+
∂

∂s

(

A′(s)

(

Φ̄−
1

2π

∫ 2π

0

Φ(s,R(s), θ)dθ

))

.

Here the �rst term looks good, and the last term is inluded in the error. How-

ever, in the middle term we have Ξ−2 multiplying Φ inside the integral, and

sine it depends on r and θ, it annot be brought out from the integral without

due punishment. Therefore, we shall de�ne the sound speed orretion fator as

the average of Ξ−2:

1

Σ(s)2
:=

1

A(s)

∫

Γ(s)

dA

Ξ2
= 1 +

1

4
η(s)2,

where the latter equivalene is obtained by a straightforward alulation from

the de�nition of Ξ.
In the sense of least squares, the average Σ(s)−2 is the best onstant estimate

for funtion Ξ(s, r, θ)−2 over Γ(s). We de�ne the error funtion

E(s, r, θ) :=
1

Ξ(s, r, θ)2
−

1

Σ(s)2
(3.7)

allowing us to write the middle term in (3.6) in the form

1

c2
∂2

∂t2

(

∫

Γ(s)

Φ

Ξ2
dA

)

=
A(s)

c2Σ(s)2
∂2Φ

∂t2
+

∫

Γ(s)

E

c2
∂2Φ

∂t2
dA. (3.8)

By using (3.4), (3.6) and (3.8) we get

1

c2Σ(s)2
∂2Φ

∂t2
−

1

A(s)

∂

∂s

(

A(s)
∂Φ

∂s

)

= F (s, t) +G(s, t), (3.9)

where F and G ontain the error terms gathered from (3.4), (3.6) and (3.8):

F (s, t) :=
1

A(s)

∂

∂s

(

A′(s)

(

Φ̄−
1

2π

∫ 2π

0

Φ(s,R(s), θ)dθ

))

,

G(s, t) :=
1

A(s)

∫

Γ(s)

(

E∆Φ−
1

Ξ
∇

(

1

Ξ

)

· ∇Φ

)

dA.

Now F (s, t) ontains a di�erene of two averages of the solution of the wave

equation. This di�erene is small, if the tube area is small. In G(s, t) the term
∆Φ is limited and the error funtion E(s, r, θ) in (Eq. (3.7)) is a di�erene of
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a funtion and its average over the dis. This di�erene small, if the urvature

fator is lose to one (E ≡ 0 for an unurved tube). The seond term in

G(s, t) is small if the urvature fator η(s) and the omponents of ∇Φ that are

perpendiular to the tube enterline are small.

Now, for the solution of the wave equation, Eq. (3.9) holds. The Webster's

horn equation with urvature is

1

c2Σ(s)2
∂2ψ

∂t2
−

1

A(s)

∂

∂s

(

A(s)
∂ψ

∂s

)

= 0. (3.10)

3.2 Numerial solution

We solve numerially the Webster's equation (3.10) with boundary onditions

orresponding to the wave equation (3.1), that is

{

∂ψ
∂s (0, t) = −vo(t)

ψt(LV T , t) + θc∂ψ(LV T ,t)
∂s = 0,

(3.11)

where LV T denotes the length of the voal trat. Here vo(t) is the glottal �ow
derived in Setion 2.2. Note that the hannel area after glottis, denoted by Ao
in Setion 2.2, is equal to A(0) allowing vo to be used diretly as the VT input.

The latter boundary ondition models boundary dissipation in the form of �ow

resistane p = θρcv.

3.2.1 Weak formulation of the Webster's equation

Let us �rst write a weak formulation of the Webster's equation. First, we shall

write the Webster's equation in �rst order form by introduing an auxiliary

funtion π(s, t) = ρψ̇(s, t). Then we de�ne W := 1
A(s)

∂
∂s

(

A(s) ∂∂s
)

, and we get

d

dt

[

ψ
π

]

=

[

0 ρ−1

ρc(s)2W 0

] [

ψ
π

]

.

Heneforth let L :=

[

0 ρ−1

ρc(s)2W 0

]

: Z → X , where

Z :=
(

H1(0, LV T ) ∩H2(0, LV T )
)

×H1(0, LV T );

X := H1(0, LV T )× L2(0, LV T ).

We equip the Hilbert spae X with the inner produt

〈[

y1
y2

]

,

[

x1

x2

]〉

X

:=
1

2

(

ρ

∫ LV T

0

y′1(s)x
′

1(s)A(s)ds+
1

ρc2

∫ LV T

0

y2(s)x2(s)
A(s)

Σ(s)2
ds

)

.

The norm indued by this inner produt is the physial energy norm.
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The endpoint ontrol and observation operators are de�ned by

G

[

z1
z2

]

:=

[

−z′1(0)
z2(LV T ) + θρcz′1(LV T )

]

and H

[

z1
z2

]

:= z2(0),

where (z1 z2)
T ∈ Z. Now the voal trat model an be written as a linear

boundary ontrol system























ż(t) = Lz(t)

Gz(t) =

[

vo(t)
0

]

Hz(t) = pc(t)
z(0) = z0

(3.12)

Here the �rst, seond and fourth equation de�ne the solution z(t) and the output
is given by the third equation. Malinen and Sta�ans (2006) and Malinen and

Sta�ans (2007) treat the solvability of suh boundary ontrol systems and in

Lukkari and Malinen (2008a) it is shown that (3.12) satis�es the onditions

required for onservativity and solvability. The reason why the ontrol operator

G is de�ned in this manner is that now the mouth boundary term is inluded

in the ontrol term. Thus, the system an be shown to be onservative also

with boundary onditions (3.11) with a small modi�ation of the argument in

Malinen and Sta�ans (2007).

In order to obtain the weak formulation, we take a test funtion

[

v(s)
0

]

∈ X

and take the inner produt of the top row of (3.12) and this test funtion:

〈[

ψ̇(s, t)
π̇(s, t)

]

,

[

v(s)
0

]〉

X

=

〈

L

[

ψ(s, t)
π(s, t)

]

,

[

v(s)
0

]〉

X

. (3.13)

For the left hand side of this we get

〈[

ψ̇(s, t)
π̇(s, t)

]

,

[

v(s)
0

]〉

X

=
ρ

2

∫ LV T

0

∂2ψ(s, t)

∂s∂t

∂v(s)

∂s
A(s)ds

and the right hand side

〈

L

[

ψ(s, t)
π(s, t)

]

,

[

v(s)
0

]〉

X

=

〈[

0 ρ−1

ρc(s)2W 0

] [

ψ(s, t)
π(s, t)

]

,

[

v(s)
0

]〉

X

=
ρ

2

∫ LV T

0

ρ−1 ∂π(s, t)

∂s

∂v(s)

∂s
A(s)ds.

We do the same thing for another test funtion

[

0
v(s)

]

∈ X to obtain

〈[

ψ̇(s, t)
π̇(s, t)

]

,

[

0
v(s)

]〉

X

=

〈

L

[

ψ(s, t)
π(s, t)

]

,

[

0
v(s)

]〉

X

. (3.14)
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Now the left hand side is
〈[

ψ̇(s, t)
π̇(s, t)

]

,

[

v(s)
0

]〉

X

=
1

2ρc2

∫ LV T

0

∂π(s, t)

∂t
v(s)

A(s)

Σ(s)2
ds

and the right hand side

〈

L

[

ψ
π

]

,

[

0
v(s)

]〉

X

=

〈[

0 ρ−1

ρc(s)2W 0

] [

ψ
π

]

,

[

0
v(s)

]〉

X

=
1

2ρc2

∫ LV T

0

ρc2Σ(s)2Wψ(s, t)v(s)
A(s)

Σ(s)2
ds

=
1

2

∫ LV T

0

∂

∂s

(

A(s)
∂ψ(s, t)

∂s

)

v(s)ds.

Partial integration yields

〈

L

[

ψ
π

]

,

[

0
v(s)

]〉

X

=
1

2

∣

∣

∣

∣

LV T

0

A(s)
∂ψ(s, t)

∂s
v(s)−

1

2

∫ LV T

0

A(s)
∂ψ(s, t)

∂s

∂v(s)

∂s
ds

(3.15)

3.2.2 Spatial disretization

The basis funtions of the element spae are formed next. First, the voal trat

is divided into N slies of equal length ∆s := LV T /N . Then, we shall de�ne

pieewise linear funtions vj(s), j = 1, ..., N + 1 by

vj(s) :=















s−(j−2)∆s
∆s , s ∈ [(j − 2)∆s, (j − 1)∆s],

− s−j∆s∆s , s ∈ [(j − 1)∆s, j∆s],

0, s /∈ [(j − 2)∆s, j∆s].

For j = 1, the de�nition on the top row, and for j = N + 1 the de�nition on

the middle row do not apply. The funtions vj are alled hat funtions beause

of their form. The funtion vj reahes value 1 at point s = (j − 1)∆s. This

means, that for the �rst basis funtion v1(0) = 1 and for the last basis funtion

vN+1(LV T ) = 1.
Thus, we are looking for an approximate solution of (3.12) of the form

[

ψ(s, t)
π(s, t)

]

=

N+1
∑

i=1

(

ξi(t)

[

vi(s)
0

]

+ µi(t)

[

0
vi(s)

])

, (3.16)

suh that the residual is orthogonal to all of the basis funtions. If we now

insert this into Eqs. (3.13) and (3.14) and instead of some v(s) we take the

inner produt with all the basis funtions, we get 2(N +1) equations whih an

be written in matrix form
{

ρKξ̇(t) = Kµ(t),
Mµ̇(t) = −Kξ(t)−Rµ+ b(t)

(3.17)
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orresponding to (3.12). Here

Mij =
1

2ρc2

∫ LV T

0

vi(s)vj(s)
A(s)

Σ(s)2
ds,

Kij =
1

2

∫ LV T

0

v′i(s)v
′

j(s)A(s)ds, (3.18)

Rij =

{

A(LV T )
2θρc , when i = j = N + 1;

0, otherwise,

bj(t) =

{

A(0)
2 vo(t), when j = 1;

0, when j 6= 1.

The damping matrix R and the load vetor b are gathered from the substitu-

tion term in (3.15) by using the boundary onditions (3.11) for the Webster's

equation. Sine the sti�ness matrix K is invertible, it an be eliminated from

the �rst equation of (3.17).

3.2.3 Temporal disretization

Next task is the time disretization. We replae ξ(t) and µ(t) with approximative

solutions ξn ≈ ξ(tn) and µn ≈ µ(tn), for whih the Crank-Niholson method

(see Malinen and Havu (2007)) an be written as
{

ρ ξ
n
−ξn−1

∆t = µn+µn−1

2 ,

M
µn

−µn−1

∆t = −K
ξn+ξn−1

2 −R
µn+µn−1

2 + b(tn),

To avoid inverting an ill-onditioned matrix, this system of equations is written

as a double reursion instead of a 2(N + 1)-sized matrix equation. Thus, we

eliminate µn from the lower equation obtaining the update equations
{ (

∆t
2 K + 2ρ

∆tM + ρR
)

ξn =
(

−∆t
2 K + 2ρ

∆tM + ρR
)

ξn−1 + 2Mµn−1 + ∆tb(tn)
ρξn − ∆t

2 µ
n = ρξn−1 + ∆t

2 µ
n−1

(3.19)

so ξn is �rst solved from the �rst equation by matrix inversion, and it is then

inserted to the seond equation from whih µn is solved.

The time steps are the same that are used in solving the equations of motion

and the ODE for vo, so we readily have the value vo(tn), whih is needed in the

evaluation of b(tn). Sine the time step is onstant exept on the steps when

the glottis loses or opens, the inverse of the matrix on the left hand side of the

�rst equation in (3.19) is pre-omputed in order to make the simulation faster.

When time step is not onstant, the matrix equation must be solved separately.

3.2.4 Resonane model

Before performing any time domain simulations, we shall ompute the formant

frequenies from the Webster's equation. This will be done �rst for an unurved

tube and then for a urved one.
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The resonanes of the Webster's equation an be solved by �nding the dis-

rete frequenies λ and their orresponding eigenfuntions (pressure distribu-

tions) [ψλ(s), πλ(s)]
T satisfying















L

[

ψλ
πλ

]

= λ

[

ψλ
πλ

]

;

G

[

ψλ
πλ

]

= 0.
(3.20)

The time harmoni extension

[

ψλ(s, t)
πλ(s, t)

]

= eλt
[

ψλ(s)
πλ(s)

]

of the eigenfuntion

learly satis�es Eq. (3.12). Thus, the imaginary part of λ is an (angular)

resonane frequeny.

Again, by writing the weak formulation for Eq. (3.20), setting the on-

trol to zero and applying spatial disretization, we obtain a generalized matrix

eigenvalue problem

Kµλ = λ2ρMµλ. (3.21)

In order to be able to ompare these frequenies with those given by the 3-D wave

equation (omputed in Hannukainen et al. (2007)), we have used the Dirihlet

boundary ondition at the mouth here. This explains the absene of the damping

matrix R. Also K and M are N ×N matries instead of (N +1)× (N +1) as in
Eq. (3.17). If the number of elements N is high enough, the eigenvalues of the

disretized system are good approximations of the eigenvalues of the original

system, espeially in the ase of the smallest eigenvalues. In our simulations we

have used N = 100.

3.2.5 Data

We shall use the MRI data provided by Olov Engwall from KTH, Stokholm.

The raw data was olleted from a native male Swedish speaker pronouning a

prolonged vowel [ø:℄ in supine position. Engwall and Badin (1999) desribe the

MR imaging proedure and also present the orresponding formant measure-

ment data.

The same data was also used in a 3-dimensional wave equation model by

Hannukainen et al. (2007). For this reason, we an ompare the 1-dimensional

Webster's equation to the atual 3-dimensional wave equation � at least in

frequeny domain.

The MRI data onsists of 29 ross-setional slies of the voal trat. However,

the slies were not perpendiular to the enterline of the trat, so the slies ould

not be used as suh. First, we determined the enterline of the voal trat by

onneting the enters of mass of eah slie. Then, a tangent vetor of the path

was numerially evaluated at all 29 points, and the slies were projeted on

the plane perpendiular to this tangent vetor. The proessed data is shown

in Fig. 3.1. The areas of eah of the slies were then alulated as well as the

irumferenes whih are needed for evaluating the hydrauli radius as desribed

in Setion 2.2. The ross-setional area is shown in Fig. 3.2 and the hydrauli
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Figure 3.1: The proessed MRI data used for onstruting the VT-model and

the enterline of the trat. The units are in meters. The mouth is at the top

left orner and the glottis at the lower right orner.
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Figure 3.2: The ross-setional area of the VT, perpendiular to the VT en-

terline. The s-axis is parameterized as the distane from the glottis measured

along the enterline.
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Figure 3.3: The urvature ratio of the VT-tube.

radius in Fig. 3.4. In these �gures, the s-axis is parameterized by the arh

length of the enterline.

Finally, the sound speed orretion fator was omputed by numerially

evaluating the urvature κ(s) of the enterline and approximating the tube

radius by R(s) =
√

A(s)/π. Fig. 3.3 shows the urvature ratio η(s) along the

VT. Let us note that the urvature ratio is always distintly less than one, as

assumed in the derivation of the Webster's equation. Even though the urvature

ratio varies a lot along the VT, the sound speed orretion fator Σ(s)−2 =
1 + 1

4η(s)
2 varies between 1 and 1.132.

The value for the normalized aousti resistane θ (see Eq. (3.1) and the

expression of Rij in Eq. (3.18)) was experimentally hosen to be 0.06. There

are many approahes in the literature for the VT termination and most of these

produe a frequeny dependent (and omplex) impedane.

One approah is to use the impedane for a piston-like soure set in a sphere.

This kind of model yields an analytial expression in form of an in�nite series.

For this reason, a more widely used model is obtained by letting the ratio of the

radii of the piston and the sphere approah zero orresponding to a piston set

into an in�nite wall. Then the aousti resistane fator θ with low frequenies

is approximately
ω2r2m
2c2 where ω is the angular frequeny of the aousti radiation

and rm is the radius of the piston. Both of these approahes are treated in e.g.

Morse and Ingard (1968) (Chapter 7). Our hoie for θ orresponds to soure

frequeny of around 2200 Hz.
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Figure 3.4: The hydrauli radius of the voal trat by equation (2.8) and the

data presented in Setion 3.2.5.

3.2.6 Results

The lowest formant frequenies F1,...,F4 for an unurved (Σ(s) ≡ 1) and a

urved tube are presented in Table 3.1. For omparison, there are also the

orresponding frequenies from a 3-D wave equation model by Hannukainen

et al. (2007) and the formants measured by Engwall and Badin (1999) from

the same test subjet. To make the omparison reasonable, we have used the

Dirihlet boundary ondition at mouth as in Hannukainen et al. (2007).

Our prinipal purpose is to ompare the Webster's equation to the 3-D wave

equation. These formants are very lose to eah other. However, for some

reason, the unurved tube seems to be even better than the urved tube. Some

of the reasons for the disrepany between the omputed and measured formants

is disussed in Hannukainen et al. (2007).

Table 3.1: Formants for [ø:℄ in kHz, from our Webster's equation in an unurved

and a urved tube, from the 3-D wave equation by Hannukainen et al. (2007)

and formants measured by Engwall and Badin (1999).

F1 F2 F3 F4

Webster, unurved 0.66 1.35 2.68 3.76

Webster, urved 0.64 1.32 2.64 3.71

HLMP07 0.68 1.35 2.71 3.79

EB99 0.50 1.06 2.48 3.24
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Fig. 3.5 shows the pressure distributions (element approximations of

πλ =
∑N+1
k=1 µλ,kvk(s), see Eq. (3.21)) related to formant frequenies F1,...,F4.

These are omputed for the urved tube, but here the di�erene between the

urved and unurved tube was insigni�ant. When omparing this with the

orresponding �gure (Fig. 2) in Hannukainen et al. (2007), it is very di�ult to

see any di�erene. This ould be expeted beause the pressure varies mainly

in the diretion of the VT. However, they report a weak ross-mode resonane

in the oral avity related to F4. This kind of phenomenon is, of ourse, not

aounted for by a 1-D model suh as the Webster's equation.

Figure 3.5: Pressure distributions orresponding to formants F1,...,F4.



Chapter 4

Full model simulations

In this hapter we shall present the results of time domain simulations of the full

model. In Setion 4.1 the model is simulated as a feedforward model so that the

VT model is simply exited with the glottis pulse and the pressure at the lips

is observed. In Setion 4.2.1 we shall investigate the e�et of the mehanial

feedbak from the VT to the glottis introdued in Setion 2.3.1. Finally, in

Setion 4.2.2 the glottis model is oupled to a tube with onstant area funtion.

The length of this tube is varied for tuning the lowest formant frequeny.

4.1 Simulations without feedbak

First simulation was performed with the same parameters as the �rst glottis

model simulation (Fig. 2.4). That is, symmetri glottis parameters and the

fundamental frequenies of the voal fold vibrating modes were 100 Hz and

105 Hz. The result is shown in Fig. 4.1. The top piture shows the volume

�ows through the glottis and the mouth. Note that the aousti vibration does

not proeed through the open glottis but the �ow there is fully determined by

the glottal �ow model. The pressure at mouth opening is shown in the seond

piture and the spetrum of this signal in the third piture in Fig. 4.1. The

lowest piture shows the spetrum of the glottal �ow. The spetra ontain peaks

at frequenies mF0, where m is an integer and F0 is the voal fold osillation

frequeny (118 Hz). The VT formant frequenies annot be seen as suh, but

in the speeh signal spetrum the peaks that are lose to formant frequenies

are learly ampli�ed. For example the �rst formant frequeny F1 = 640 Hz is

between the peaks at 5F0 and 6F0. Between every multiple of F0 there are �ve

subharmonis with intervals of 16.8 Hz in both spetra.

33
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Figure 4.1: The volume �ows through the glottis (VT-model input) and through

the mouth and the pressure at mouth in a feedforward simulation. Below there

are the spetra of the pressure at mouth and the glottal �ow.

4.1.1 Inverse �ltering the obtained signal

In order to validate our model, the pressure at mouth was inverse �ltered by

iterative adaptive inverse �ltering (IAIF) method developed in Alku (1992). For

this we used a MATLAB-based toolkit, TKK Aparat (see Airas (2008)). This

method estimates the VT transfer funtion in an iterative manner using all-pole

modelling. This transfer funtion is then used together with a lip radiation

model for inverse �ltering.

in the Aparat the maximum number of formant frequenies to be modelled

by the voal trat �lter an be hosen by the user as well as the value of the
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�rst order lip radiation model. Fig. 4.2 shows the glottal �ow given by our

model and the inverse �ltered signal. In the transfer funtion estimation we set

the maximum number of the formants to be �tted to 11 and the lip radiation

oe�ient to 0.97. Table 4.1 shows the values of the estimated VT formants,

that were below one half of the sampling frequeny (here 19 kHz), and those

omputed from the Webster's equation with boundary onditions (3.11). Note

that the formants in Table 3.1 were omputed using Dirihlet boundary ondi-

tion at mouth, whih explains the small disrepany between these two. With

greater values of the aousti resistane oe�ient θ this disrepany obviously

grows. Three lowest formants are estimated rather well, whereas the rest are

systematially smaller.

The glottal �ow estimated by inverse �ltering seems to have problems in

apturing the rapid ending of the pulse. The reason for this is that rapid hanges

in the signal orrespond to higher frequenies in the spetrum. Sine there

seems to be a systemati error in the estimated transfer funtion related to the

higher formants, it an be expeted that these hanges ause error in the inverse

�ltering proedure.

Table 4.1: Formants for [ø:℄ in kHz given by our Webster's equation and for-

mants estimated by the IAIF method

F1 F2 F3 F4 F5 F6 F7 F8 F9

Webster 0.65 1.31 2.65 3.71 5.15 6.81 7.23 8.30 9.23

Estimated 0.66 1.32 2.61 3.65 5.06 6.47 6.84 7.73 8.62

Figure 4.2: The glottal �ow obtained by inverse �ltering and the �ow given by

our model
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4.2 Simulations with feedbak

4.2.1 Realisti VT-geometry

The mehanially oupled ounter pressure from the voal trat always seemed

to have a damping e�et on the voal ords. For this reason we had to diminish

the glottal damping terms bij from 0.1 Nm/s in the feedforward system to

0.065 Nm/s in the feedbak system to sustain ontinued osillation. As before,

this value was found experimentally. Other parameters were �rst kept the same

as earlier.

Here the e�et of the feedbak is rather mild, even so, that the di�erent

situations ould not be identi�ed only by observing the pressure at mouth.

A small ripple an be seen in the glottal area funtion, but the glottal �ow

pulse is not very sensitive to this ripple. The spetrum of the glottal �ow is

not in�uened by the feedbak. A slight additional skewing of the pulse an

be observed. If we alulate the ratio of the pulse aeleration time to the

whole open phase duration, that is Tmax−T1

T2−T1

(see Setion 2.4.4) it is 90.6 % for

the system without feedbak and 91.5 % for the system with feedbak. The

hange in the glottis dynamis is illuminated in Fig. 4.3, whih shows the

phase diagrams of the glottal osillation in two ases. The upper left piture

Figure 4.3: The phase diagrams of the glottal osillation from a simulation

without feedbak (top) and a simulation with feedbak (bottom). Pitures on

the left show the behaviour of the ords in the narrow end of the glottis and

pitures on the right show the behaviour of the ords in the wide end.
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shows the urve (w11(t), ẇ11(t)) and the upper right piture shows the urve

(w12(t), ẇ12(t)) in the simulation without feedbak. In the lower pitures there

are the same urves in the simulation with feedbak. In both ases the osillation

is perfetly periodi, meaning that the yles in the phase diagrams are stable.

The vibration pattern of w12 hanges signi�antly when the feedbak is present,

but this ould be expeted sine the aerodynami fore is muh weaker in the

wide end of the glottis thus making the feedbak more in�uential.

4.2.2 Straight tube as the resonator

More interesting is what happens when the voal fold vibration frequeny F0 is

loser to the lowest formant frequeny F1 or when 2F0 ≈ F1. Here this e�et

is studied by using an unurved tube shown in Fig. 4.4 as the resonator. The

area of the tube at s = 0 is hosen so that it oinides with A(0) of the realisti
geometry used earlier. The area after the expansion is the same as the area of

mouth. Also the boundary onditions in both ends of the tube were the same

as in the earlier simulations with the realisti VT geometry (Eq. (3.11)).

Two sets of simulations were performed. In the �rst one, the glottis model

parameters were the same as earlier. The tube length was varied between

0.20 m ... 0.71 m thus spanning the frequeny range 123.2 Hz ... 438.8 Hz
overing three multiples of the soure frequeny F0. These tube lengths are

rather unrealisti onsidering human VT, but the sole purpose of this experi-

ment is to study the feedbak e�et when F0 and F1 are lose to eah other.

By varying only the tube length we an exlude any internal hanges in the

glottis so that all hanges in the glottal vibration pattern are aused by the

oupling. In reality, F0 − F1 rossovers an our, but obviously with higher

soure frequenies F0 (see Titze et al. (2008)).

The spetrogram with di�erent values of F1 is shown in Fig. 4.6. This

is a slightly nontypial spetrogram, beause the x-axis variable is not time,

but the formant frequeny F1. All simulations are independent with default

initial onditions. The simulations have been long enough and the beginning

of eah simulation has been exluded from the data, so that there is no e�et

Figure 4.4: The geometry for testing the feedbak e�et for di�erent resonator

formant frequenies F1. The length of the tube was varied for tuning F1.
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Figure 4.5: The soure frequeny F0 as a funtion of the lowest VT formant

frequeny F1 in the �rst set of simulations with the straight tube. The auxiliary

lines are F0 = F1, 2F0 = F1 and 3F0 = F1.

Figure 4.6: The spetrogram of the pressure signal when F1 is varied. The line

shows F1 in the spetra and the diamonds show the soure frequeny F0 in eah

simulation.
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from initial transitions. One simulation orresponds to one tube length. The

�gure also shows the soure frequenies F0 in every simulation and an auxiliary

line showing F1 in the spetrogram. The soure frequenies are also plotted

in a more illustrative sale in Fig. 4.5 with lines F0 = F1, 2F0 = F1 and

3F0 = F1. This piture learly shows what happens to F0 when F1 rosses some

of its multiples. When F1 ≈ F0, the soure frequeny loks in to the formant

frequeny, until it gets too far from the natural soure frequeny. A similar but

weaker phenomenon an be seen when 2F0 ≈ F1 (and also when 3F0 ≈ F1).

In the seond set of simulations the glottis model was tuned so that its

natural frequeny was higher (233 Hz). This was ahieved by inreasing the

sti�ness oe�ients to k11 = k21 = 682 N/m and k12 = k22 = 379.5 N/m. Also

the glottal gap was narrowed to g = 0.2 mm and the subglottal pressure was

inreased to 1800 Pa. Now the tube length was varied between 0.16 m ... 0.50 m
so that the orresponding F1 frequeny range was 175 Hz, ..., 560 Hz overing

two multiples of F0. The soure frequeny's dependene on F1 is shown in Fig.

4.7. Now F0 remains loked in to F1 muh longer and F0 limbs as high as

400 Hz. After the frequeny drop, F0 settles on a level about 20 Hz higher

than before the �limb�. The e�et of 2F0 − F1-rossover is milder now than

in the �rst set. The bump in F0 in this rossover is here only about 8.5 Hz
ompared to 13 Hz in the �rst set.
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Figure 4.7: The soure frequeny F0 as a funtion of the lowest VT formant fre-

queny F1 in the seond set of simulations with the straight tube. The auxiliary

lines are F0 = F1 and 2F0 = F1.

4.3 Comparison to other works

Titze (2008) has reated a nonlinear soure-�lter oupling theory and Titze

et al. (2008) reated three voal exerises for human test subjets for studying

this oupling in pratise. They reported that when the interation between the

soure and �lter is mild, that is, when the dominant soure frequeny lies well
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below the lowest VT formant frequeny, the e�et of the oupling an be seen in

the glottal �ow pulse skewing and pulse ripple. Our results are well in line with

this observation (see Setion 4.2.1 and Fig. 4.3). When the soure frequeny

F0 and the lowest formant frequeny F1 are loser to eah other (or even when

2F0 ≈ F1), the feedbak an ause a sudden jump in the soure frequeny. Our

model reveals a synhronization phenomenon. This means, that when F1 is

lose to F0 or some of its multiples, the osillation frequeny of the mass-spring

system hanges so that the two systems are synhronized. This synhronization

ould ontribute to some of the phenomena reported by Titze et al. (2008) (Figs.

5C and 10D).

They also reported two other kinds of bifurations besides frequeny jumps,

namely subharmoni regimes (spetral peaks at frequenies k2F0, k = 1, 3, 5, . . . )
and haoti osillation. Our model reveals �ve subharmonis between every

multiple of F0, and they are stronger near 2F0−F1 rossover but not remarkably

(see Fig. 4.6). Chaoti osillation never ourred in our simulations, even when

the subglottal pressure psub was inreased up to 3300 Pa, or when the glottis

model parameters were set unsymmetri (m21 = 1.2 ·m11).

Hatzikirou et al. (2006) have also reated a similar two mass model of glottis

and simulated it with a tube of varying length as the aousti load. They

also report frequeny pulling by F1. In addition, the subharmonis our muh

learer in their simulations as they do here.



Chapter 5

Disussion

Chapter 2

The primary target of this work was to onstrut a low order nonsymmetri

mass-spring model with a 1-D �ow model. This task was arried out in Chapter

2. The used �ow model takes into aount visous pressure losses in the glottis

and VT. The voal trat inertane is also inluded in the �ow equation, Eq.

(2.12). However, the �ow pulse (Fig. 2.7) seems to be slightly too muh skewed

towards the end of the open phase. Reasons for this lie in our harsh assump-

tions that the �ow is laminar and inompressible. Beause of the laminarity

assumption, the pressure loss in the glottis and voal trat given by our model

is likely to be smaller than in reality. This is beause turbulent �ow and ex-

luded phenomena on the tissue surfae (e.g. muosal vibrations) might ause

energy dissipation to heat.

The inompressibility assumption has an e�et on the inertia of the air ol-

umn in the VT. (oe�ient Ciner in Eq. (2.12)). Beause the �ow is, in fat,

ompressible, there is hidden spring reation whih would temporally divide the

hange in momentum in a di�erent way. For this reason the inertia oe�ient

in the model may appear too large. Also the pressure loss in the VT e�etively

grows, if the inompressibility assumption is omitted.

Instead of onstruting a dynamial ompressibility model, the inertane

Ciner and the pressure loss oe�ients Cg and CV T ould be �tted in an optimal

way so that the pulse would math as well as possible the glottal pulses obtained

by inverse �ltering. This proedure is illustrated in Fig. 5.1. It shows an LF-

model pulse whih was obtained by �rst inverse �ltering with the IAIF method a

natural [a℄ vowel, produed by a male speaker using pressed phonation. The LF-

model parameters were obtained using the Aparat toolkit. In reating pressed

speeh, subjets typially inrease addution of their voal folds, hene resulting

in a glottal �ow with long losed phase and a short losing phase.

The parameters for the modelled pulse are obtained by reating a pulse

using Eq. (2.12) and approximating ∆W1 = A sin(ωt), where t ∈ [0, π/ω]. The
squared error between this pulse and the LF-pulse was minimized by adjusting

41
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the parameters Ciner, Cg and CV T in the �ow equation. This was done by using

MATLAB's built-in ommand fminsearh. However, after optimal parameter

estimation, the pressure loss due to the �ow through mouth and the pressure

loss in the VT turned out to be negligible. After omitting these terms we are

left with three parameters but only two terms in the �ow equation. This means

that same pulse is obtained with in�nitely many parameter ombinations. A

reasonable ombination minimizing the squared error is psub = 550 Pa, Ciner =

2.35 · 10
3 kg/m4 and Cg = 8.24 · 10

−9 Ns. The values omputed earlier are

Ciner = 3.30 · 10
3 kg/m4 and Cg = 8.22 · 10

−11 Ns.
The pulses in Fig. 5.1 are very lose to eah other. This suggests that the

LF-pulse an be faithfully onstruted with a rude physial model.
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Figure 5.1: The modelled pulse and an LF-pulse obtained by inverse �ltering

[a℄ vowel produed by male speaker using pressed phonation

Chapter 3

The VT model was presented in Chapter 3. First, suh a variant of the Webster's

equation was presented, that inludes a ontribution due to the tube urvature.

This variant is derived in a manusript Lukkari and Malinen (2008b). Then the

state spae was disretized by a FE method, using the physial energy norm of

the state spae. Crank-Niholson disretization was applied in the time variable.

A seondary purpose of this work was to ompare the spetral properties of

the Webster's equation (with and without urvature) with the 3-D wave equa-

tion. Hannukainen et al. (2007) omputed the formant frequenies by using the

3-D wave equation. The data for the Webster's equation, that is, the VT ross-

setional area funtion and the urvature of the VT enterline, were obtained
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from the same MRI data that was used also by Hannukainen et al. (2007).

It was notied that the formant frequenies given by both variants of the

Webster's equation were quite lose to the formants given by the wave equation.

The four lowest formants given by the unurved Webster's equation were on

average 1.2 % lower, and the formants from the urved equation were on average

3.2 % lower than the formants given by the wave equation (see Table 3.1). This

di�erene ould be explained by the hoie of the VT enterline as the enter of

mass of eah ross-setion. This way the tube might beome e�etively longer,

than in the 3-D equation, beause in the 3-D geometry a wave propagating

in the VT an �take a shortut� in the urves of the tube. In the Webster's

equations ase, this is of ourse impossible. Furthermore, sine the sound speed

orretion fator in the Webster's equation with urvature is always less than

or equal to one, the urvature fator in the equation makes the tube e�etively

even longer, whih lowers the formant frequenies even more. This questions the

usability of the Webster's equation with urvature as suh, at least in aousti

appliations. When the urvature ratio is small, the Webster's equation with

urvature beomes more aurate but the e�et of the urvature is negligible.

When the urvature ratio is greater, the urved equation fails to desribe the

urvature e�et orretly.

One possible way to �x the situation is to sale the total length of the tube.

By dimension analysis, the formant frequenies would then be saled similarly.

So instead of studying the absolute values of the formant frequenies, we should

ompare the relative frequenies Fn/F1. However, these were very lose to eah

other for both urved and unurved ase so we annot make any onlusions

based on these omputations. In addition, we annot use the higher formant fre-

quenies beause the formants from the wave equation are distorted (upwards)

by the rossmode resonanes. Also the geometry used for onstruting the data

is ertainly not exatly suh as it is assumed in the derivation of the Webster's

equation. That is, the tube ross-setions are not irular.

Another shortoming of our model is the lak of dissipative terms in the voal

trat. The physial interpretation of the Neumann boundary ondition at the

walls of the VT is that the material of the tube walls is absolutely in�exible. In

reality, the walls of the VT are elasti and the vibration of the air is transmitted

to the tissue ausing dissipation at walls. Visous losses are not inluded in

the Webster's equation either. Thus the only dissipation in the model is the

�ow resistane at lips: pres = θρcvm. The normalized aousti resistane θ is

here more or less arbitrarily hosen, but re�ning the model here by physial

onsiderations would be rather useless as long as other dissipation is exluded.

Chapter 4

The results of the full model simulations are shown in Chapter 4. The model

output seems all right and the spetra of both mouth pressure signal and the

glottal �ow are believable. The results were also well in line with earlier �ndings:

when the soure frequeny F0 is well below the lowest VT formant frequeny F1,

the VT feedbak e�et is rather weak. Only when the frequenies were lose to
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eah other, the feedbak aused bifurations in the soure vibration. However,

the only type of bifuration revealed by our model was the soure frequeny

lok-in to the formant frequeny F1 when F1 approahed F0 or when F1 ≈ 2F0.

Experimental studies by Titze et al. (2008) revealed also subharmoni and,

with some test subjets, even haoti regimes at these frequeny rossovers. In

their experiments the frequenies F0 and F1 hanged dynamially, so that it is

impossible to say whether these phenomena were steady or only transitional.

Our simulations for studying the feedbak e�et in Setion 4.2.2 were separate

for di�erent values of F1 so that no transitional bifurations an be deteted.

In reality, there are of ourse other phenomena besides the VT aoustis that

an have an e�et on the glottal behaviour.

Hatzikirou et al. (2006) also performed similar simulations as we in Setion

4.2.2, but with suh a feedbak on�guration that the VT feedbak had a diret

e�et on the glottal �ow. Their model revealed subharmonis in the spetrum

of the position of one mass in their mass spring model of the glottis.
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Appendix A

The MATLAB-ode

The struture of the ode is suh that there are two initialization �les, init.m

and VTdata.m. The init.m-sript has to be run before every simulation. The �le

VTdata.m only needs to be run one unless hanges are made. Unfortunately

the original VT data an not be provided.

The �le solver.m does the simulation. It alls funtions �.m, whih is the

time derivative of the state vetor (from the equations of motion of the glottis),

NewV.m, whih omputes the glottal �ow and interpol.m whih performs the

interpolation as desribed in Setion 2.4.1.

A.1 File init.m

%In this file the physial parameters of the (glottis) model are

%initialized

global d step rho width L mu;

%===SIMULATION PARAMETERS===

NumIts=5000; %Number of iterations

step=0.00002; %Time step length

N=100; %Number of disretization points in the VT

fb=1; %Feedbak on (1) or off (0)

ontinue=0; %Continue previous simulation? 1/0

%===PHYSICAL PARAMETERS===

rho=1.2; %Air density

=343; %Speed of sound

mu=18.7e-6; %Dynami visosity of air

H0=11.2*10^-3; %Height of the subglottal hannel
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width=18*10^-3; %Width of the subglottal hannel

L=6.8*10^-3; %Length (or thikness) of the glottis

Kh=730; %Retrieving stiffness in voal ord ontat

aa=0.85; %The x-oordinates of the springs are aa*L and bee*L

bee=0.15;

theta=.06; %Mouth resistane oeffiient in VT boundary ondition

% When glottis is narrower than this, it is losed and flow is set to

% zero (epsilon in the report)

d=2.5e-5;

%---Parameters for ord #1---

%Masses

m11=1.686e-4;

m12=0.595e-4;

m13=2.531e-4;

%Stiffness oeffiients

k11=124;

k12=69;

%Damping oeffiients

b11=.065;

b12=.065;

%The equilibrium state when there is no flow

Y_110=5.4*10^-3;

Y_120=0;

%---Parameters for ord #2---

%Masses

m21=m11;

m22=m12;

m23=m13;

%Stiffness oeffiients

k21=k11;

k22=k12;

%Damping oeffiients

b21=b11;

b22=b12;
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%The equilibrium state when there is no flow

Y_210=5.8*10^-3;

Y_220=H0;

%===INITIAL CONDITIONS===

%---Initial values for the glottis---

if ontinue > .5

xend=x(1:8,end); %Storing the final state of previous

end %simulation

x=zeros(9,NumIts+1); %The solution points are stored here

if ontinue > .5

%Continuing previous simulation

x(1:8,1)=xend;

else

%Glottis initially losed (determined by simulating with onstant flow)

x(1,1)=0.00574388213041;

x(2,1)=0.07929750365587;

x(3,1)=-0.00013732214913;

x(4,1)=-0.03349122869515;

x(5,1)=0.00545611786959;

x(6,1)=-0.07929750365587;

x(7,1)=0.01133732214913;

x(8,1)=0.03349122869516;

end

%---Initial value for the glottal flow---

if ontinue > .5

Vend=Vout(end);

else

Vend=0;

end

Vout=zeros(NumIts+1,1);

Vout(1)=Vend;

%---The initial state for the VT---

if ontinue < .5

xi=zeros(N+1,1);

eta=zeros(N+1,1);

end

%---Forming the mass, stiffness and damping matries---

M1=[m11+m13/4,m13/4;m13/4,m12+m13/4℄;
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M2=[m21+m23/4,m23/4;m23/4,m22+m23/4℄;

M1_inv=inv(M1);

M2_inv=inv(M2);

K1=[aa^2*k11+bee^2*k12, aa*(1-aa)*k11+bee*(1-bee)*k12;

aa*(1-aa)*k11+bee*(1-bee)*k12, (1-aa)^2*k11+(1-bee)^2*k12℄;

K2=[aa^2*k21+bee^2*k22, aa*(1-aa)*k21+bee*(1-bee)*k22;

aa*(1-aa)*k21+bee*(1-bee)*k22, (1-aa)^2*k21+(1-bee)^2*k22℄;

B1=diag([b11 b12℄);

B2=diag([b21 b22℄);

kerr=L*width*rho*H0^2; %Auxiliary oeffiient

open=y210-y110>d; %Test whether the glottis is initially losed

A.2 File VTdata.m

%This file proesses the VT data and determines the enterline of the VT,

%the urvature of it and the ross-setional area funtion

global Ao Am vakio1 vakio2

%Importing the data and removing the false slies from the mouth. The data

%onsists of three matries ontaining the X-, Y- and Z-oordinates of the

%VT boundary points. One row ontains the information of one slie.

neutral_trat; %This imports the data

X3D(29,:)=X3D(34,:);

Y3D(29,:)=Y3D(34,:);

Z3D(29,:)=Z3D(34,:);

X3D=X3D(1:29,:);

Y3D=Y3D(1:29,:);

Z3D=Z3D(1:29,:);

%Change of units: m -> m

X3D=.01*X3D;

Y3D=.01*Y3D;

Z3D=.01*Z3D;

nsl=size(X3D,1); %Number of SLies

pps=size(X3D,2); %Points Per Slie

%Initially the VT enterline is determined as the enter of mass of the

%boundary points. The Y-oordinate (orresponding to right-left diretion)

%is left zero. Other oordinates are X (forward-bakward) and Z (up-down)

path=zeros(3,nsl);

path(1,:)=mean(X3D');
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path(3,:)=mean(Z3D');

%In matrix VT the first row ontains the parameter s (enterline arh length

%parameter), seond row ontains the hydrauli radius, third is the ross

%setional area and fourth is the sound speed orretion fator 1/Sigma(s)^2.

VT=zeros(4,nsl);

VT(1,2:end)=umsum(sum((path(:,2:end)-path(:,1:end-1)).^2).^.5);

%Then the slies are projeted on planes whose normals are tangents of the

%enterline at eah slie. In addition, the area and the hydrauli radius

%of eah slie are determined. Also the enterline is orreted to math

%the enter of mass of the slie.

%First the tangent vetors of the enterline are determined and stored

normals=[path(:,2)-path(:,1),path(:,3:end)-path(:,1:end-2),

path(:,end)-path(:,end-1)℄;

for k=1:nsl

%k:th normal vetor is rotated 90 degrees and normalized to unit length

abu=[normals(3,k);0;-normals(1,k)℄;

abu=abu/norm(abu);

%The previous projetion is stored here. Initially it is the last point to

%be projeted (that is pps:th point)

old_proj=abu'*([X3D(k,pps);Y3D(k,pps);Z3D(k,pps)℄-path(:,k))*abu+

[0;Y3D(k,pps)-path(2,k);0℄;

%This vetor is the orretion to the enterline at k:th slie

orretion=zeros(3,1);

for j=1:pps

%proj is the datapoint projeted on the plane with respet to

%origin at the enter of the slie

proj=abu'*([X3D(k,j);Y3D(k,j);Z3D(k,j)℄-path(:,k))*abu+[0;Y3D(k,j)-path(2,k);0℄;

%hange of the origin to the original one

X3D(k,j)=path(1,k)+proj(1);

Z3D(k,j)=path(3,k)+proj(3);

%This "area" is the area of a triangle formed by the enter of the slie

%and points "proj" and "old_proj".

%This area an be negative if the slie is not onvex.

area=sign(normals(:,k)'*ross(proj,old_proj))*abs(aos(proj'*old_proj/

norm(proj)/norm(old_proj))/8*(norm(proj)+norm(old_proj))^2);

VT(3,k)=VT(3,k)+area;

%The average of "proj" and "old_proj" is weighted with the area of
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%the triangle and it is added to the "orretion"-vetor

orretion=orretion+area/2*(proj+old_proj);

%First the irumferenes are stored here

VT(2,k)=VT(2,k)+norm(old_proj-proj);

old_proj=proj;

end

%The "orretion" is divided with the whole slie area beause of the

%weighting. The enterline is then orreted.

orretion=2/3/VT(3,k)*orretion;

path(1,k)=path(1,k)+orretion(1);

path(3,k)=path(3,k)+orretion(3);

end

lear('abu','proj','old_proj')

VT(2,:)=2*VT(3,:)./VT(2,:); %The hydrauli radius is r_h=2A/C.

%The fourth row of "VT" ontains the orretion fator for the speed of

%sound. If they are replaed with ones, the tube is assumed unurved.

kaps=zeros(nsl,1);

for k=1:size(VT,2)-2

hyp=norm(path(:,k+2)-path(:,k));

l1=path(:,k+1)-path(:,k);

l2=path(:,k+2)-path(:,k+1);

kappa=2*(1-(l1'*l2)^2/norm(l1)^2/norm(l2)^2)^.5/hyp;

kaps(k+1)=kappa;

end

VT(4,:)=1+VT(4,:)./VT(3,:);

VT(4,:)=1+.25*VT(3,:)/pi.*kaps'.^2;

lear('hyp','l1','l2','normals','kappa','kaps')

%The s-axis is disretized for the FEM-solver

Lvt=VT(1,end); %Length of the VT (=arh length of the enterline)

ds=Lvt/N; %Disretization interval

%The data is modified to orrespond to this disretization, that is the

%data is interpolated in the points of disretization. This data is stored

%to the matrix "VT2".

VT2=zeros(4,N+1);

VT2(1,:)=ds*(0:N);

VT2(2:4,1)=VT(2:4,1);

VT2(2:4,end)=VT(2:4,end);

for k=2:N

ind=find(VT(1,:)<=(k-1)*ds,1,'last');

VT2(2:4,k)=((k-1)*ds-VT(1,ind))/(VT(1,ind+1)-VT(1,ind))*VT(2:4,ind+1)+

(VT(1,ind+1)-(k-1)*ds)/(VT(1,ind+1)-VT(1,ind))*VT(2:4,ind);

end

lear('ind');
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Ao=VT2(3,1); %VT area after glottis

Am=VT2(3,end); %Area of mouth

%Computing the onstant C_{iner}

integrandi=1./VT2(3,:);

integraali=(.5*integrandi(1)+.5*integrandi(end)+sum(integrandi(2:end-1)))*ds;

vakio1=rho*Ao*integraali;

%Computing the onstant C_{VT}

integrandi=1./VT2(2,:).^4;

integraali=(.5*integrandi(1)+.5*integrandi(end)+sum(integrandi(2:end-1)))*ds;

vakio2=integraali;

lear('integrandi','integraali');

%Finally, the mass matrix M, stiffness matrix K and dissipative matrix R

%orresponding to the boundary ondition at mouth

R=sparse(zeros(N+1,N+1));

R(N+1,N+1)=Am/2/(rho**theta);

M=sparse(zeros(N+1,N+1));

M(1,1)=1/4*VT2(3,1)*VT2(4,1)+1/12*VT2(3,2)*VT2(4,2);

for k=2:N

M(k,k)=1/12*VT2(3,k-1)*VT2(4,k-1)+1/2*VT2(3,k)*VT2(4,k)+1/12*VT2(3,k+1)*VT2(4,k+1);

M(k,k-1)=1/12*VT2(3,k-1)*VT2(4,k-1)+1/12*VT2(3,k)*VT2(4,k);

end

M(N+1,N+1)=1/12*VT2(3,N)*VT2(4,N)+1/4*VT2(3,N+1)*VT2(4,N+1);

M(N+1,N)=1/12*VT2(3,N)*VT2(4,N)+1/12*VT2(3,N+1)*VT2(4,N+1);

M=M+M'-diag(diag(M));

M=ds/2/rho/^2*M;

M_inv=M^-1;

K=sparse(zeros(N+1,N+1));

K(1,1)=VT2(3,1)/2+VT2(3,2)/2;

for k=2:N

K(k,k)=VT2(3,k-1)/2+VT2(3,k)+VT2(3,k+1)/2;

K(k,k-1)=-VT2(3,k-1)/2-VT2(3,k)/2;

end

K(N+1,N+1)=VT2(3,N)/2+VT2(3,N+1)/2;

K(N+1,N)=-VT2(3,N)/2-VT2(3,N+1)/2;

K=K+K'-diag(diag(K));

K=1/2/ds*K;

%The matrix in the update equations are preomputed and -inverted here for

%the time step "step" in order to make omputation faster.
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xii=full((step/2*K+2/step*rho*M+rho*R)^-1);

xi=(-step/2*K+2/step*rho*M+rho*R);

A.3 File solver.m

%This file solves the equations of motion of the glottis, the

%glottal flow ODE and the Webster's equation one step at a time.

op=zeros(NumIts+1,1); %1/0 glottis open or losed

op(1)=open;

dt=step;

Pm=zeros(NumIts+1,1); %Vetor for pressure at mouth

Vm=Pm; %Vetor for flow veloity at mouth

P=Pm; %Counter pressure (feedbak)

bhat=zeros(N+1,1); %FEM-solver load vetor

for n=1:NumIts

%EQUATIONS OF MOTION

Vf=Vout(n)*Ao/H0/width; %Subglottal flow veloity

X=x(1:8,n); %Current state

%RK4 steps

s1=ff(X,fb*.0817*P(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,

Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s2=ff(X+step/2*s1,fb*.0817*P(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,

Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s3=ff(X+step/2*s2,fb*.0817*P(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,

Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s4=ff(X+step*s3,fb*.0817*P(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,

Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

Xnew=X+step/6*(s1+2*s2+2*s3+s4);

dt=step;

%Testing whether the glottis loses/opens at urrent step. If so,

%then interpolate as desribed in the report

if abs((Xnew(5)-Xnew(1)>d)-open)>.5

open=1-open;

[Xnew,dt℄=interpol(x(:,n-1),[X;x(9,n)℄,[Xnew;x(9,n)+step℄);

end

op(n+1)=Xnew(5)-Xnew(1)>0;

x(1:8,n+1)=Xnew;

x(9,n+1)=x(9,n)+dt;
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%GLOTTAL FLOW

if op(n+1) > .5

Vout(n+1)=NewV(Xnew(5)-Xnew(1),Xnew(7)-Xnew(3),Vout(n),dt);

end

Vout(n+1)=(Vout(n+1)>0)*Vout(n+1); %No negative flow

%WEBSTER'S EQUATION

%Load vetor for the FEM-solver

bhat(1)=dt*.25*Ao*(Vout(n)+Vout(n+1));

%Crank-niholson time disretization. The matries in the update

%equations are preomputed in VTdata.m for steps with time step "step".

if dt<step

xi_old=xi;

xi=(dt/2*K+2/dt*rho*M+rho*R)\((-dt/2*K+2/dt*rho*M+rho*R)*xi_old+2*M*eta+bhat);

eta=2/dt*rho*(xi-xi_old)-eta;

else

xi_old=xi;

xi=xii*(xi*xi_old+2*M*eta+bhat);

eta=2/step*rho*(xi-xi_old)-eta;

end

Pm(n+1)=eta(N); %Pressure at mouth

Vm(n+1)=-(xi(N)-xi(N-1))/ds; %Flow veloity at mouth

P(n+1)=eta(1); %Counter pressure

end

[OQ,flux℄=suhde(op,Vout,x(9,:)); %Calulating the open quotient and

OQ %glottal net flux and printing them

flux

A.4 File �.m

funtion f=ff(x,P,Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,Y_110,Y_120,

Y_210,Y_220,width,kerr,L,Kh,d)

%This is the funtion f of the equation x'(t)=f(x(t)), whih are the

%equations of motion of the glottis

gap1=x(5)-x(1);

gap2=x(7)-x(3);
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if open > .5

if gap1<0

error('neglog')

end

%Load fore for open glottis

Fsum=-kerr*Vf^2/2/gap1/gap2;

F1=kerr*Vf^2/2*(-1/gap1/(gap2-gap1)+1/(gap1-gap2)^2*log(gap2/gap1));

F2=Fsum-F1;

F=[F1-Y_110^2/2/L*width*P;F2+Y_110^2/2/L*width*P℄;

else

%Load fore for losed glottis

F=[(gap1<0)*Kh*(-gap1)^1.5-Y_110^2/2/L*width*P;Y_110^2/2/L*width*P℄;

end

dW1=M1_inv*(-B1*[x(2);x(4)℄-K1*[x(1)-Y_110;x(3)-Y_120℄-F);

dW2=M2_inv*(-B2*[x(6);x(8)℄-K2*[x(5)-Y_210;x(7)-Y_220℄+F);

f=[x(2);dW1(1);x(4);dW1(2);x(6);dW2(1);x(8);dW2(2)℄;

A.5 File NewV.m

funtion new_v=NewV(gap1,gap2,v,dt)

%This funtion alulates the glottal flow by using a semi-impliit

%Euler-method

global vakio1 vakio2 rho Ao Am width L mu

%Driving pressure (p_{sub} in the flow-ODE)

Plung=800;

%No flow if the glottis is losed

if gap1<=0

new_v=0;

return

end

CC=12*mu*Ao*0.8e-3/width/gap1^3+8*mu*Ao/pi*vakio2;

%Semi-impliit Euler method

new_v=1/(1+CC*dt/vakio1)*(v+dt/vakio1*(Plung-.5*rho*(Ao/Am)^2*v^2));
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A.6 File interpol.m

funtion [new,dt℄=interpol(Xold,X,Xnew)

global d step;

gap0=Xold(5)-Xold(1);

gap1=X(5)-X(1);

gap2=Xnew(5)-Xnew(1);

%Interpolate the point of losure (stored in "root")

p=polyfit([Xold(9),X(9),Xnew(9)℄,[gap0-d,gap1-d,gap2-d℄,2);

r=roots(p);

root=r(1);

if and(r(2)>X(9),r(2)<Xnew(9))

root=r(2);

end

%"new" is the interpolated solution

new=zeros(8,1);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(1),X(1),Xnew(1)℄,2);

new(1)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(2),X(2),Xnew(2)℄,2);

new(2)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(3),X(3),Xnew(3)℄,2);

new(3)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(4),X(4),Xnew(4)℄,2);

new(4)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(5),X(5),Xnew(5)℄,2);

new(5)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(6),X(6),Xnew(6)℄,2);

new(6)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(7),X(7),Xnew(7)℄,2);

new(7)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(8),X(8),Xnew(8)℄,2);

new(8)=polyval(p,root);

dt=root-X(9);


