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Chapter 1

Introdu
tion

1.1 Human voi
e produ
tion

Figure 1.1 shows a s
hemati
 diagram of the human vo
al me
hanism. In a

simpli�ed model of human voi
e produ
tion, lungs 
an be 
onsidered as a large

air reservoir in 
onstant pressure. This pressure is 
aused by the breathing

mus
les 
ontra
ting the lungs. The air es
apes from the lungs through a 
hannel


onsisting of two parts, the tra
hea and the vo
al tra
t (VT). These parts are

separated by a slit-like narrowing, formed by vo
al 
ords. The ori�
e between

the 
ords is 
alled the glottis. At the other end, the vo
al tra
t is terminated by

the lips. The voi
e also has a se
ondary transmission 
hannel, namely the nasal

tra
t diverging from the VT at velum and ending at the nostrils. The velum

opening regulates the in�uen
e of the nasal 
oupling.

In the basi
 
on�guration the voi
e is generated by the �ow indu
ed vibra-

tions of the vo
al 
ords whi
h a
t like a valve, periodi
ally opening and 
losing

the glottis, and thereby generate short �ow pulses. This os
illation o

urs be-


ause the 
ords have no (stable) equilibrium states for a �ow ex
eeding a 
ertain

value, known as the phonation threshold. When the glottis is 
losed, there is

a transglottal pressure di�eren
e, that will eventually for
e the glottis open.

After the glottis opens, the �ow a

elerates and � due to Bernoulli e�e
t �

the lo
al pressure at the glottis drops. The pressure drop su
ks the vo
al 
ords

together again. The glottal �ow pulses ex
ite the a
ousti
s of the air 
olumn in

the vo
al tra
t. The a
ousti
 voi
e signal is �ltered by the vo
al tra
t and the

sound signal is eventually transmitted to the exterior spa
e through the mouth

and/or the nostrils.

1.2 Spee
h sounds

The geometry of the VT varies during phonation due to the movement of the

arti
ulators, of whi
h the most important ones are the lips, jaw, tongue and

velum. Let us brie�y introdu
e the produ
tion me
hanisms of typi
al spee
h

1
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Figure 1.1: S
hemati
 diagrams of the human voi
e me
hanism and fun
tional


omponents of the vo
al tra
t by Flanagan (1972)

sounds in the General Ameri
an (GA) diale
t (see Flanagan (1972)).

In vowel produ
tion, the VT is more or less open at every point, and the

sound is transmitted prin
ipally through mouth and, to a lesser degree, through

nostrils. The vowels 
an be 
lassi�ed by two properties of the 
on�guration, the

position of the tongue hump (front, 
entral and ba
k) and degree of 
onstri
tion

of the VT at mouth. Altering the VT geometry has an e�e
t on the a
ousti


eigenfrequen
ies of the air 
olumn in the VT. In phoneti
s these frequen
ies are

known as the formant frequen
ies.

In the English language the produ
tion of some 
onsonants resembles vowel

produ
tion. For example the produ
tion of the glides [w, j℄ pronoun
ed as

in words �we� and �you� respe
tively, is very 
lose to the produ
tion of [u℄

and [i℄ (pronoun
ed as in words �boot� and �eve�). Also the produ
tion of the

semivowels [r, l℄ pronoun
ed as in �read� and �let� resembles that of vowels. The

only di�eren
e is that the tongue is up 
reating a 
onstri
tion at the mouth.

Also the nasals [m, n, ­℄ resemble vowels to some extent. They are produ
ed

by 
losing the vo
al tra
t � either by lips in [m℄, the tip of the tongue against

the hard palate in [n℄ or the ba
k of the tongue against the soft palate [­℄ �

and holding the nasal tra
t widely open. The sound is then transmitted only

through nostrils.
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One 
lass of the physi
ally more 
ompli
ated 
onsonants are the fri
atives

[v, f, ð, Θ, z, s, x, s, h℄ pronoun
ed as in words �vote�, �for�, �then�, �thin�,

�zoo�, �see�, �azure�, �she� and �he� respe
tively. The fri
atives are produ
ed

by 
onstri
ting the VT at 
ertain point so that turbulent �ow is formed at the


onstri
tion. For example [v℄ and [f℄ are produ
ed by 
onstri
ting the mouth

opening by the teeth and the lower lip. The di�eren
e between these two is that

voi
ing (that is, vo
al 
ord os
illation with 
losure) o

urs during the produ
tion

of [v℄ whi
h is not the 
ase during the produ
tion of [f℄. This way fri
atives 
an

be further 
lassi�ed into voi
ed [v, ð, z, x℄ and their voi
eless pairs [f, Θ, s, s℄.

The so 
alled glottal fri
ative [h℄ has no voi
ed 
ounterpart.

Another 
lass are the stop 
onsonants [p, t, k, b, d, g℄, pronoun
ed as in

words �pay�, �to�, �key�, �be�, �day� and �go� respe
tively. They are produ
ed by

initially 
losing the VT at 
ertain point and letting the lungs build up a pressure

behind the 
losure. This pressure is then abruptly released by opening the


losure. For example, when pronoun
ing [d℄ or [t℄, the VT is initially 
losed by

pressing the tongue against the palate. Like fri
atives, also the stop 
onsonants


an be sub
ategorized into voi
ed [b, d, g℄ and voi
eless [p, t, k℄, depending on

whether voi
ing o

urs during the pressure buildup.

Of spee
h sounds not in
luded in GA spee
h, let us present few examples

whose produ
tion di�ers from any GA sound. One example is the Finnish [r℄,

whi
h is produ
ed by letting the tip of the tongue vibrate against the hard

palate. Another one is the Fren
h (or guttural) [r℄ whi
h is produ
ed by letting

the velum vibrate against the ba
k of the tongue.

1.3 Modelling human phonation

The demand for phonation models has in
reased 
onstantly during the last

�fty years. Appli
ations of su
h models 
an be found in telephony and spee
h

synthesizing te
hnologies as well as some medi
al s
ien
es su
h as surgery (see,

i.e., Svá£ek and Horá£ek (2006)). Perhaps the best known 
lass of models


onsist of a low-order mass-spring model of glottis, 
oupled to some kind of

stati
 a
ousti
 load representing the vo
al tra
t (see, e.g., Ishizaka and Flanagan

(1972)). The model 
onstru
ted in this thesis also falls under this 
ategory.

These models are suitable for modelling the produ
tion of vowel (and vowel-

like) spee
h sounds. Physi
ally more 
ompli
ated spee
h sounds, su
h as stop


onsonants and fri
atives are outside these models' range.

One approa
h for studying human phonation are inverse �ltering te
hniques

(see, i.e., Alku (1992) and Alku et al. (2006)) whi
h 
onstitute a demand for

a prior model of the glottis signal. Su
h signal models are presented in e.g.

Fant (1979) and Fant et al. (1986).

One of the earliest widely known physi
al glottis models is presented by

Ishizaka and Flanagan (1972). Their glottis model is symmetri
 and it 
onsists

of two masses per 
ord. The aerodynami
 for
e a
ting on glottis takes into

a

ount the Bernoulli e�e
t and a vis
ous pressure drop a

ording to the Hagen-

Poiseuille equation. Their VT-model 
onsists of four 
ylindri
al tube-elements.
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Figure 1.2: Blo
k diagram of a model with a feedba
k 
on�guration as in the

model by Ishizaka and Flanagan (1972)

Figure 1.3: The blo
k diagram of the model presented in this paper

The VT pressure at the glottis end is taken into a

ount when evaluating the

glottal �ow. This kind of feedba
k 
on�guration is illustrated in Fig. 1.2.

A more re
ent model of phonation is presented by Titze (2008). There the

e�e
t of the VT feedba
k to both glottal �ow and vo
al fold me
hani
s is studied

�rst separately and then with a 
omputational model.

1.4 Outline of this work

Fig. 1.3 shows the blo
k diagram of the model 
onstru
ted in the present work.

Our design philosophy is to keep the model simple enough to be mathemati
ally

tra
table. We want all the blo
ks to be physi
ally realisti
 on a subsystem level.

However, 
onsidering the whole system, there are some model simpli�
ations on

the subsystem level that would ex
lude ea
h other.

First, in Chapter 2, a mass-spring model of the glottis is developed. The

geometry of the model as well as the equivalent aerodynami
 for
es are highly

simpli�ed. The model has two degrees of freedom per 
ord and no symmetry

assumption is made. This means that both vo
al 
ords are allowed to vibrate

independently. Thus, modelling of the e�e
t of nonsymmetri
 parameters is

possible. For the 
losed glottis, a nonlinear spring for
e is applied. This for
e
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is a simple version of the Hertz model of impa
t for
e as in another glottis

model by Horá£ek et al. (2005). This paper and its prede
essor (Horá£ek and

�ve
 (2002)) have proven valuable referen
es 
on
erning also many other glottis

model details.

This work also presents a model of the glottal �ow. This model takes into

a

ount vis
ous pressure losses in the glottis and the vo
al tra
t. It also takes

into a

ount the inertan
e of the VT. However, in the derivation of the �ow

equation, it is assumed that the air is in
ompressible. That is, the mass and

volume �ow through every 
ross-se
tion in the VT is 
onstant at a given moment.

At the end of Chapter 2, the behaviour of the glottis model is investigated by

numeri
al simulation with di�erent parameter 
on�gurations in
luding a sim-

ulation with asymmetri
 glottis parameters. In these simulations there is no

feedba
k from the VT dire
tly to the mass-spring model. However, the �ow

model impli
itly 
ontains an inertive 
ounter pressure from the vo
al tra
t,

whi
h is always present.

In Chapter 3 the vo
al tra
t model is presented. The model is a Webster's

horn equation model whi
h approximates the solution of the 3-D wave equation

averaged over the VT 
ross-se
tions (for an early treatment of the Webster's

equation, see Chiba and Kajiyama (1941)). Here we use a more general vari-

ant of the Webster's equation, derived by Lukkari and Malinen (2008b). The


urvature of the tube is taken into a

ount as a 
orre
tion fa
tor for the speed

of sound. However, energy dissipation at the tube walls is not taken into a
-


ount here. A solver based on the Finite Element Method is written for the VT

model. At the end of Chapter 3, the lowest formant frequen
ies and 
orrespond-

ing pressure/velo
ity potential distributions are 
omputed from an eigenvalue

equation. The formants are 
ompared to those given by a 3-D wave equation

model by Hannukainen et al. (2007). These two models are 
onstru
ted by using

exa
tly the same magneti
 resonan
e imaging (MRI) data for the VT, making

this 
omparison reasonable.

In Chapter 4, the glottis and VT models are 
oupled together. For 
om-

parison, a simulation without the VT feedba
k is run. Then the e�e
t of the

feedba
k is investigated �rst for the a
tual VT geometry and then by using a

straight tube as the resonator. The length of the tube is varied for tuning the

formant frequen
ies.

It is parti
ularly interesting to see what happens when the lowest formant

frequen
y 
rosses the glottal fundamental frequen
y or its lowest multiples. This

has been studied also by Titze (2008) and Hatzikirou et al. (2006) with a model

similar to the one in Ishizaka and Flanagan (1972).



Chapter 2

The glottis model

In this 
hapter, we shall introdu
e the two blo
ks on the left in the blo
k diagram

(Fig. 1.3). First, we shall 
onstru
t the mass-spring model of glottis in Se
tion

2.1. Then, a 1-D model of the (in
ompressible) glottal �ow with vis
ous pressure

loss is 
onstru
ted in Se
tion 2.2. The 
oupling from the �ow to the glottis model

through the load for
e F is developed in Se
tion 2.3.

The geometry of the vo
al folds is as simple as possible. There is little

point in re�ning the model geometry, when many of the material parameters

are more or less negle
ted, and the aerodynami
s in the �ow model are based

on somewhat harsh laminarity and in
ompressibility assumptions. The same

applies also for the omission of trigonometri
 fun
tions in the formulas of the

load for
e F .

Simulations will be performed for the glottis model before it is 
onne
ted to

the vo
al tra
t.

2.1 The me
hani
s of the glottis model

We 
onsider a physi
al system shown in Fig. 2.1. The system 
onsists of two

wedge-shaped vibrating bodies having two degrees of freedom ea
h. The system

is pra
ti
ally two-dimensional, meaning that all 
ross-se
tions in the glottis are

re
tangular. The width of the vo
al 
ords and the 
hannel between them (to

the dire
tion perpendi
ular to the paper) is denoted by h.
This system 
an be repla
ed by an equivalent system that 
onsists of alto-

gether six masses, three ea
h side. These three masses are atta
hed to a rod

of length L, so that there is one mass in both ends and one at the midpoint.

This rod is 
onne
ted to the wall of the 
hannel with two sets of springs and

dampers. The dampers are lo
ated at the endpoints of the rod whereas the

springs are lo
ated at points whose distan
e from the midpoint is l. The reason
for the pla
ement of the springs is that the tuning properties are better than

if the springs would be at the endpoints of the rod as well. This will be dis-


ussed in Se
tion 2.4.2 in more detail. In addition, in the equivalent system

6
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Figure 2.1: The geometry of our model

there are load for
es F1 and F2 that depend only on the glottal openings at the

narrow end of the glottis (point x = L) and in the wide end (x = 0), namely

∆W1 := g − w11 + w21 and ∆W2 := H0 − w12 + w22. Here g is the glottal

gap, when the displa
ements are zero. This gap is a 
ontrol parameter in the

model. When the glottis is open, F1 and F2 
orrespond to the for
e and moment


aused by the dynami
 pressure p(x, t). When the glottis is 
losed, there is no

air �ow. Instead of the air pressure there is a 
onta
t for
e between the vo
al


ords pushing the 
ords apart.

The equations of motion for the 
ords are

{

M1Ẅ1(t) + B1Ẇ1(t) + K1W1(t) = −F

M2Ẅ2(t) + B2Ẇ2(t) + K2W2(t) = F, t ∈ R
(2.1)

where Wj = (wj1 wj2)
T are the displa
ements of the endpoints of the jth 
ord

(j = 1, 2) and F = (F1 F2)
T is the external load for
e. Mj is the mass matrix,

Bj is the damping matrix and Kj is the sti�ness matrix.

The equilibrium position of the masses is taken to be wji = 0, i, j = 1, 2
whi
h o

urs when there is no �ow, and 
onstant pressure psub at all sides of the
vo
al 
ords. Then F ≡ 0 and sin
e the system is at rest, that is Ẇj = Ẅj = 0,
by Eq. (2.1) we have Wj = 0.

Next we shall 
al
ulate the entries of the mass and sti�ness matri
es by

means of Lagrangian me
hani
s. First, we need to express the kineti
 energy Tj
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and potential energy Vj as fun
tions of variables wji and their time derivatives

ẇji. For the jth 
ord we get

Tj =
1

2
mj1ẇ

2
j1 +

1

2
mj2ẇ

2
j2 +

1

2
mj3

(

ẇj1 + ẇj2
2

)2

(2.2)

and

Vj =
1

2
kj1 (awj1 + bwj2)

2
+

1

2
kj2 (bwj1 + awj2)

2
, (2.3)

where a = L/2+l
L and b = L/2−l

L .

The Lagrangian fun
tion is de�ned as Lj = Tj − Vj and it satis�es the

Lagrange equations

d

dt

(

∂Lj

∂ẇji

)

−
∂Lj

∂wji
= 0, i, j = 1, 2. (2.4)

By substituting (2.2) and (2.3) into (2.4) we get the unloaded and undamped

equations of motion

{

mj1ẅj1 + mj3
ẅj1+ẅj2

4 +
(

a2kj1 + b2kj2
)

wj1 + ab(kj1 + kj2)wj2 = 0,

mj2ẅj2 + mj3
ẅj1+ẅj2

4 +
(

b2kj1 + a2kj2
)

wj2 + ab(kj1 + kj2)wj1 = 0.

Thus, the mass and sti�ness matri
es are

Mj =

[

mj1 +
mj3

4
mj3

4
mj3

4 mj2 +
mj3

4

]

,

Kj =

[

a2kj1 + b2kj2 ab(kj1 + kj2)

ab(kj1 + kj2) b2kj1 + a2kj2

]

.

(2.5)

Sin
e the dampers are lo
ated at the endpoints of the 
ords, the damping

matri
es are diagonal

Bj =

[

bj1 0
0 bj2

]

.

Numeri
al values of the physi
al 
onstants are determined in Se
tion 2.4.2.

The damping 
oe�
ients bji remain tuning parameters.

2.2 Glottal �ow

We denote the subglottal pressure with psub and take the pressure in the exterior
spa
e to be zero. We assume, that the pressure 
hanges along the glottis and

vo
al tra
t for three reasons. Firstly, there is a Bernoulli �ow through the mouth

with velo
ity vm. Se
ondly, there is a vis
ous pressure loss in the glottis and
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the VT. Thirdly, the air in the VT is in a

elerating (de
elerating) motion when

the glottis is opening (
losing) 
ausing an inertive pressure. Mathemati
ally

psub =
1

2
ρv2
m + ploss(∆W1, vo) + pa, (2.6)

where pa is the pressure a

elerating/de
elerating the air in the VT, and ploss
is the pressure loss in the glottis and the VT. The supraglottal �ow velo
ity is

denoted by vo, whi
h is the quantity we are interested in. This pressure loss

depends on the �ow velo
ity and the state of the glottis through opening ∆W1.

It is here assumed that the air is in
ompressible in the VT too.

Re
all that the pressure loss in a tube with 
ir
ular 
ross-se
tion is given by

the Hagen-Poiseuille equation

dp

dx
= −

8µQ

Ar2
(2.7)

where µ is the dynami
 vis
osity of the gas (unit Pa · s), Q is the gas �ux

(m3/s), A is the tube 
ross-se
tional area, and r is the radius of the 
hannel.

The derivation of the Hagen-Poiseuille equation 
an be found in Fetter and

Wale
ka (1980), pages 445-448. The Hagen-Poiseuille equation is derived for a

laminar �ow in a 
hannel with 
ir
ular 
ross-se
tion (in whi
h 
ase A = πr2)

but it 
an be used also for other pro�le shapes. In that 
ase the radius r must

be repla
ed with the hydrauli
 radius, de�ned as

rh =
2A

C
, (2.8)

where A is the area and C is the 
ir
umferen
e of the 
ross-se
tion of the 
hannel.

For a tube with 
ir
ular 
ross-se
tion the hydrauli
 radius 
oin
ides with the

radius of the 
ross-se
tion.

The pressure loss in the VT is 
omputed by integrating (2.7) over the VT.

The VT geometry is presented in Se
tion 3.2.5. Here we need the hydrauli


radius rh whi
h is shown in Fig. 3.4, and the area fun
tion shown in Fig. 3.2.

Thus the pressure loss in the VT is

ploss,V T = vo
8µAo

π

∫ LV T

0

ds

A(s)rh(s)2
=: voCV T .

Between two parallel planes within distan
e H from ea
h other, the Hagen-

Poiseuille law is
dp

dx
= −

12µQ

hH3
. (2.9)

One way to 
ompute the pressure loss in the glottis would be to set H to be

the height of the 
hannel in the glottis, that is H = H(x, t) and integrate this

expression over the glottis. However, this pressure loss was experimentally found

to be rather mild. Therefore, motivated by Eq. (2.9), the pressure loss in the

glottis was taken to be of the form

ploss,g =
Cg

∆W 3
1

vo, (2.10)
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where the loss 
oe�
ient Cg = 12µAoL2

h . This 
orresponds to a pressure loss in

a re
tangular tube with height ∆W1, width h and length L2, where ∆W1 << h.
Here L2 remains a tuning parameter to be determined experimentally.

Now the whole pressure loss 
an be written as

ploss(∆W1, vo) =

(

Cg
∆W 3

1

+ CV T

)

vo. (2.11)

Next we shall deal with the a

eleration of the air in the VT. The power

a

elerating/de
elerating the air in the VT is paQ = paAovo. This power is

equal to the 
hange rate of the total kineti
 energy of the air 
olumn, that is

pa(t)Aovo(t) =
d

dt

∫

V T

1

2
ρv(r, t)2dr

=

∫

V T

ρv(r, t)v̇(r, t)dr

= vo(t)v̇o(t)ρ

∫

V T

A2
o

A(r)2
dr

∣

∣

∣

∣

dr

A(r)
= ds

= vo(t)v̇o(t)ρA2
o

∫ LV T

0

ds

A(s)
,

where A(r) = A(s) is the area of the 
ross-se
tion that 
ontains r and whose

distan
e from the glottis is s (measured along the VT 
enterline). Here we

used v(r, t) = Ao

A(r)vo(t) (and the same for v̇o) whi
h follows from the in
om-

pressibility. By denoting the tube inertan
e by Ciner := ρ
∫ LV T

0
ds
A(s) we get

pa(t) = CinerAo · v̇o(t). Now Eq. (2.6) yields

v̇o(t) =
1

CinerAo

(

psub −
1

2
ρ

(

Ao

Am

)2

vo(t)
2 −

(

Cg
∆W 3

1

+ CV T

)

vo(t)

)

(2.12)

where the �ow velo
ity at the mouth vm is repla
ed with Ao

Am
vo, and Am =

A(LV T ) is the area of the mouth opening. The 
onstants Ciner and CV T are

determined by numeri
al integration from data presented in Figs. 3.4 and 3.2.

The subglottal pressure psub remains a 
ontrol parameter whi
h is dire
tly re-

lated to the average glottal volume �ow.

2.3 The load for
e F

2.3.1 Aerodynami
 for
e for the open glottis

We shall assume that the �ow is one dimensional. That is, both the �ow velo
ity

V = V (x, t) and the pressure p = p(x, t), where x denotes the distan
e from the

wide end of the glottis.

We shall use the stati
 version of the law of 
onservation of mass for in
om-

pressible �ow

H(x, t)V (x, t) = H1vo, (2.13)
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where H1 is the supraglottal 
hannel height, whi
h is set so that the 
hannel area


oin
ides A(0) in the VT model developed in Chapter 3, that is H1 = A(0)/h,
where h is the 
hannel width. In the glottis, the height of the 
hannel is

H(x, t) = ∆W2(t) +
x

L
(∆W1(t)−∆W2(t)), x ∈ [0, L]. (2.14)

The pressure and velo
ity distributions are 
onne
ted through the 
ontinuity

equation

∂p(x, t)

∂x
+ ρV (x, t)

∂V (x, t)

∂x
+

∂V (x, t)

∂t
= 0, x ∈ [0, L].

However, the time derivative part is negle
ted here, and so we get the familiar

Bernoulli law

p(x, t) +
1

2
ρV (x, t)2 = psub (2.15)

where psub is the subglottal pressure.

Now we solve V (x, t) from (2.13), and p(x, t) from (2.15) and �nally by using

(2.14) we get

p(x, t)− psub = −
1

2
ρv2
o

H2
1

(

∆W2 + x
L (∆W1 −∆W2)

)2 (2.16)

Thus we have 
onne
ted the velo
ity distribution to the relative positions

of the 
ords and the pressure distribution to the velo
ity distribution. The

aerodynami
 load for
e for the open glottis

FA =

(

FA,1
FA,2

)

, ∆W1 > 0


an now be determined by two integrals:

FA,1 + FA,2 = h

∫ L

0

(p(x, t)− psub) dx (2.17)

and

L · FA,1 = h

∫ L

0

x(p(x, t)− psub) dx− pc · h
H1

2

H0 −H1

2
, (2.18)

where pc is the supraglottal perturbation pressure from the vo
al tra
t. The area

of in�uen
e of pressure pc is hH1/2 (assuming the glottal gap to be negligible)

and the moment arm of the 
orresponding for
e is (H0 − H1)/2. Here psub
is subtra
ted from the pressure p(x, t) be
ause of our assumption that wij =
0 ∀ i, j = 1, 2 is the equilibrium position under subglottal pressure psub, and
therefore for
es F1 and F2 must vanish when p(x, t) ≡ psub and pc = 0.

Finally, using (2.16), the evaluation of integrals (2.17) and (2.18) yields

FA,1 + FA,2 = −
ρv2
ohL

2
·

H2
1

∆W1∆W2
(2.19)
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and

FA,1 =
ρv2
ohL

2

(

−
H2

1

∆W1(∆W2 −∆W1)
+

H2
1

(∆W1 −∆W2)2
ln

(

∆W2

∆W1

))

−

−
H1(H0 −H1)

4L
h · pc. (2.20)

Then by subtra
ting (2.20) from (2.19) we get

FA,2 = =
ρv2
ohL

2

(

H2
1

∆W2(∆W2 −∆W1)
−

H2
1

(∆W1 −∆W2)2
ln

(

∆W2

∆W1

))

+

+
H1(H0 −H1)

4L
h · pc. (2.21)

Note that if the supraglottal perturbation pc = 0, we get (2.20) from (2.21) by

inter
hanging ∆W1 ←→ ∆W2. This symmetry 
ould be expe
ted be
ause the

�ow dire
tion has no e�e
t on the aerodynami
 for
es in our simple �ow model.

2.3.2 Conta
t for
e for the 
losed glottis

When the glottis is 
losed, the aerodynami
 for
e is zero. Instead, there is an

impa
t for
e due to 
ollision of the vo
al 
ords. Horá£ek et al. (2005) model this

for
e by using a slightly simpli�ed version of the Hertz model of impa
t for
es

(see Landau and Lifshitz (1970), pages 30-35). This impa
t for
e is of the form

fH = kH |∆W1|
3/2, when ∆W1 < 0.

In the Hertz model, the 
oe�
ient kH depends on the material of the 
olliding

obje
ts and also on their shape, more pre
isely the radius of 
urvature at the


onta
t point. Therefore, the 
oe�
ient 
annot be de�ned by the Hertz model in

our geometry. Despite this, using a nonlinear spring as impa
t for
e is physi
ally

justi�able, and we shall apply one.

Of 
ourse, the e�e
t of the 
ounter pressure pc does not vanish when the

glottis is 
losed. Together with the impa
t for
e the load for
e for the 
losed

glottis be
omes (see Eq. (2.18) and the dis
ussion following it)

FH =





kH |∆W1|
3/2 − H0−H1

2L
H1

2 h · pc
H0−H1

2L
H1

2 h · pc



 when ∆W1 < 0.

2.4 Numeri
al solution

2.4.1 Method

We have written MATLAB 
ode for the numeri
al solution of the equations

of motion (2.1) and the �ow equation (2.12). This 
ode 
an be found in

Appendix A. The 
ode uses the 
lassi
al fourth order Runge-Kutta (RK) method
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for the equations of motion and impli
it Euler method for the �ow equation.

The load fun
tion F in the equations is dis
ontinuous, and this 
auses prob-

lems. In addition, the aerodynami
 for
es (2.20)-(2.21) are singular at the point

of dis
ontinuity. We 
an get rid of the singularity by repla
ing the point of dis-


ontinuity slightly above zero. This means stopping the �ow when the glottal

gap is under a 
ertain threshold ǫ. Of 
ourse the vis
osity in the glottis stops

the �ow anyway, and ǫ is 
hosen to be so small that the �ow already is rather

low. The meaning of this tri
k is merely that now we 
an use 
onstant time

step length for almost every step. Be
ause of this we spare one matrix inversion

on every step in the FEM solver for the VT model. This makes the numeri
al

solution faster. The numeri
al solution is not sensitive to the 
hoi
e of ǫ.
Thus the load fun
tion for the equations of motion is pie
ewise de�ned

F
(

∆W1(t),∆W2(t)
)

=











FA
(

∆W1(t),∆W2(t)
)

, when ∆W1(t) > ǫ

0, when ∆W1(t) ∈ [0, ǫ]

FH
(

∆W1(t)
)

, when ∆W1(t) < 0.

Note that F has only one dis
ontinuity at ∆W1(t) = ǫ.
So we got rid of the singularity but the dis
ontinuity still 
auses a problem

in numeri
al solution. This is dealt with the following pro
edure. If at 
ertain

moment the glottis is open, meaning ∆W1,k > ǫ, we use only values of FA in

the next RK-step, even on the �wrong� side of the dis
ontinuity if needed. Here

we must be 
areful with the 
hoi
e of the timestep length. It has to be 
hosen

small enough, so that the 
hange of ∆W1 in one step does not ex
eed ǫ.
If the glottis 
loses at the next timestep, meaning ∆W1,k+1 < ǫ, we'll inter-

polate the point where the threshold ǫ is 
rossed. For this we use the se
ond

degree interpolating polynomial for whi
h values ∆W1,k−1, ∆W1,k and ∆W1,k+1

are needed.

We shall demonstrate this interpolation with an example. We assume that

the threshold ǫ = 0.2 and that by using FA as load fun
tion we have solution

points ∆W1,3 = 0.4, ∆W1,4 = 0.3 and ∆W1,5 = 0.16667 (see Fig. 2.2). The

threshold was 
rossed at the step 4 → 5. Now we shall interpolate by �tting

a se
ond degree polynomial to the solution points and solving the point where

the threshold is 
rossed. In this example the point is t = 4, 772h where h is

the length of the timestep. After this we �t interpolating polynomials for every

variable and evaluate their values at t = 4, 772h and set these values for the

new solution point. On the next step FH is used as the load fun
tion be
ause

now the glottis is 
losed.

In this interpolation, the order of the error is O(h3) sin
e we use the se
ond
degree interpolation polynomials. In one RK-step the order of the error is O(h4).
However, the number of the steps where this interpolation is performed, does

not depend on h, but only on the length of the simulation time interval. This

means that the overall order of the error is O(h3).
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Figure 2.2: Interpolation example

2.4.2 Physi
al 
onstants

The geometry of our model is as simple as possible. Therefore we shall de-

termine the 
ords' total mass, stati
 moment, and the moment of inertia by

using a somewhat more realisti
 geometry than the one used for determining

the aerodynami
 for
es. This geometry is the one used by Horá£ek and �ve


(2002). They approximated the shape of the vo
al fold by a paraboli
 fun
tion

a(x) = −159.861(x− 5.812 · 10−3)2 + 5.4 · 103 [m] x ∈ [0, L].

The total mass, stati
 moment and moment of inertia with respe
t to point

x = 0 
an now be evaluated by integrals

m = hρh

∫ L

0

a(x) dx,

T = hρh

∫ L

0

xa(x) dx,

I = hρh

∫ L

0

x2a(x) dx,

where h is the width of the 
hannel and ρh is the density of the vo
al 
ords.

Now the entries of the mass matrix (2.5) 
an be determined through 
onditions

mj1 + mj2 + mj3 = m,

L
2 mj3 + Lmj1 = T,

(

L
2

)2
mj3 + L2mj1 = I, j = 1, 2.

(2.22)
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As in Horá£ek and �ve
 (2002) the parameters in pre
eding equations were

taken as follows: L = 6.8 mm, h = 18 mm and ρh = 1020 kg/m3. With these

parameters, by solving Eqs. (2.22) we get mj1 = 1.686 · 10−4 kg, mj2 = 0.595 ·
10−4 kg and mj3 = 2.531 · 10−4 kg.

The height of the 
hannel, whi
h is also the glottal gap at x = 0 when the

displa
ements W1 = W2 = 0, was taken as H0 = 11.2 mm. The glottal gap at

the narrowest point x = L was g = 0.4 mm, when the displa
ements were zero.

The air density was ρ = 1.2 kg/m3 and the dynami
 vis
osity µ = 18.7·10−6Pas.
The sti�ness 
oe�
ient for the 
onta
t for
e was kH = 730 N/m3/2. The

subglottal pressure was psub = 800 Pa above the ambient pressure. The length

L2 in the expression of the glottal pressure loss 
oe�
ient was 0.8 mm (see

explanation related to Eq. (2.10)).

The Lapla
e-transformation of the undamped (B = 0) system yields

s2MŴ (s) + KŴ (s) = F̂ (s),

where M and K are as in (2.5). The transfer fun
tion from F to W is

G(s) = (s2M + K)−1.

The natural (angular) frequen
ies of the system are the imaginary parts of the

poles of the transfer fun
tion. Thus, they are obtained as the roots of the

polynomial

r(s) = det(s2M + K).

However, we want to solve an inverse problem. We want to �t the sti�ness


oe�
ients k1 and k2 so that they 
orrespond to desired natural frequen
ies f1

and f2. Thus we want to solve equations

{

r(2πif1) = 0
r(2πif2) = 0

(2.23)

with respe
t to sti�ness 
oe�
ients k1 and k2. Here the problem was that a

real solution did not always exist if the natural frequen
ies were 
lose to ea
h

other. This problem is solved by adjusting the parameter l, whi
h is the distan
e

between the midpoint x = L/2 and the springs. When l = 0.35L the sti�ness


oe�
ients were real in all simulated 
ases.

Bounds for the damping parameters bji were experimentally found so that

the damped system was stable but not overdamped, meaning that the os
illation

did not stop on
e it had started. We used values bji = 0.1 Nm/s for i, j = 1, 2,
when there was no feedba
k from the vo
al tra
t.
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2.4.3 Results

First we set f1 = 100 Hz and f2 = 105 Hz. Solving equations (2.23) with these

frequen
ies gives k11 = k21 = 124 N/m and k12 = k22 = 69 N/m. Fig. 2.3

shows the eigenmodes of the 
ords vibrating in va
uo and their 
orresponding

eigenfrequen
ies with these parameters.

Figure 2.3: Eigenmodes and 
orresponding eigenfrequen
ies for the 
ords vi-

brating in va
uo

The timestep in all simulations was 0.02 ms. First time domain simulation

was performed with all-symmetri
 parameters and initial 
onditions. The results

of this simulation are shown in Fig. 2.4. The upper pi
ture shows the positions

of the 
ords in the narrow end of the glottis (x = L). The pi
ture in the middle

shows the os
illation of the lower 
ord at the wide end of the glottis (x = 0).
The lowest pi
ture shows the glottal area,

Ag =

{

h∆W1(t), when ∆W1(t) > 0,
0, when ∆W1(t) ≤ 0.

The behaviour of the model is regular. The frequen
y of the os
illations is

F0 = 118 Hz and the open quotient (OQ) is 0.63, meaning that the glottis is

open 63 % of the time. The average glottal volume �ow is 1
T

∫ T

0
Aovout(t)dt =

0.30 l/s, where T is one period duration. Fig. 2.5 shows the glottal area fun
tion

and the �ow through the glottis during one open phase.

We also 
arried out a simulation with non-symmetri
 masses. We set the

mass m21 20 % greater than m11. Other parameters were as in the �rst simula-

tion. The positions of the 
ords in the narrow end of the glottis are shown in the

upper pi
ture in Fig. 2.6. The asymmetry 
auses a phase di�eren
e between

the 
ords' os
illation, and redu
es the os
illation frequen
y to 114 Hz. The

OQ is again 0.63 and the average glottal volume �ow is 0.31 l/s. The phase

di�eren
e is illustrated in the lower pi
tures whi
h show the phase diagrams

(w11(t), w12(t)) and (w12(t), w22(t)). However, besides the frequen
y, the only

thing that 
an be �heard� from the glottal behaviour is the glottal area fun
tion,

and it is not remarkably in�uen
ed by the asymmetry.



CHAPTER 2. THE GLOTTIS MODEL 17

0 0.02 0.04 0.06 0.08

5.5

6
Positions of the cords at x=L

(m
m

)

0 0.02 0.04 0.06 0.08
−0.1

−0.05

0

Position of the lower cord at x=0

(m
m

)

0 0.02 0.04 0.06 0.08
0

5

10

(m
m

2 )

Time (s)

Glottal area

Figure 2.4: Results of the symmetri
 simulation; f1 = 100 Hz, f2 = 105 Hz

Figure 2.5: The output velo
ity and the glottal area fun
tion during one pulse.

The simulation parameters are as in the �rst simulation (Fig. 2.4).
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Figure 2.6: Results of the asymmetri
 simulation. The mass m21 is 20 % greater

than m11. The 
ord nr. 2 
orresponds to the thi
ker line in the upper pi
ture.

2.4.4 Parameter identi�
ation of the F-model

Fant (1979) used a three-parameter model (often referred to as the F-model) to

des
ribe the glottal �ow pulse. This model was later improved by Fant et al.

(1986) (known as the LF-model). They removed the abrupt �ow termination in

the F-model and added an exponential de
ay to the end of the �ow derivative.

The parameters for these pulses are determined by inverse �ltering of measure-

ments of the volume velo
ity at the lips (see, i.e., Alku et al. (2006) and the

referen
es therein).

In our model the end of the pulse is smooth (that is, 
ontinuously di�eren-

tiable). Despite this, the pulse has more resemblan
e to the F-model. Therefore

we shall 
ompare our velo
ity pulse to the three-parameter F-model pulse �tted

into our pulse. These pulses are presented in Fig. 2.7.

The glottal volume velo
ity pulse in Fant (1979) 
onsists of two pie
es, a

rising and a falling bran
h:

U(t) =

{

1
2U0(1− cos(ωt)), when t ∈ (T1, Tmax),

U0

(

K cos
(

ω(t− Tmax)
)

−K + 1
)

, when t ∈ [Tmax, T2).

The three parameters are the peak value U0, the pulse rise frequen
y ω =
π

Tmax−T1

, where T1 is the time, when glottis opens (T1 = 0 in the pi
ture) and

Tmax is the peak time. The third parameter is the steepness fa
tor for the

falling bran
h K =
(

1− cos
(

ω(T2 − Tmax)
))−1

, where T2 is the time, when

glottis 
loses again.
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In Fig. 2.7 there is the output volume velo
ity pulse (the same pulse as

in Fig. 2.5) and the Fant-model pulse that is �tted to our pulse as des
ribed

above. The parameters used for �tting are also shown in the pi
ture.

Figure 2.7: The output volume velo
ity pulse given by our model and a �tted

Fant-model pulse.



Chapter 3

The vo
al tra
t model

Our purpose is to 
onne
t our glottis model to an a
ousti
 load whi
h is modelled

by the Webster's equation.

Consider �rst the solution of the wave equation for the velo
ity potential.

Sin
e we are handling a tube-like domain, we know that the wave motion prop-

agates mainly in the dire
tion of the tube. This motivates us to study only the

solution's average over ea
h 
ross-se
tion of the tube. Our goal is to write an

equation approximating the behaviour of this averaged solution, that would be

simpler than the 3-D wave equation. This equation is known as the Webster's

horn equation.

A 
omplete derivation of this equation 
an be found in Lukkari and Malinen

(2008b). They also take into a

ount the 
urvature of the tube, whi
h 
auses

a 
orre
tion fa
tor for the speed of sound. The derivation of the Webster's

equation with 
urvature will be outlined here.

Before 
onne
ting the glottis model and the VT model together, the formant

frequen
ies and 
orresponding pressure distributions will be 
omputed in this


hapter. These results 
an be 
ompared with a 3-D wave equation model by

Hannukainen et al. (2007). This 
omparison is reasonable be
ause the models

are 
onstru
ted by using the same data for the VT-geometry.

3.1 The Webster's equation

3.1.1 Preliminaries

We are looking for an approximate solution to the wave equation



















Φtt = c2∆Φ, in Ω,

Φt + θc∂Φ
∂ν = 0, on Γ1,

∂Φ
∂ν = 0, on Γ2,
∂Φ
∂ν = u, on Γ3,

(3.1)

20
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where Ω is the interior of the vo
al tra
t, Γ1 is the mouth opening, Γ2 denotes

the walls of the vo
al tra
t, and Γ3 is a 
ontrol surfa
e above the glottis. The

fun
tion Φ is a velo
ity potential, that is, a fun
tion satisfying −∇Φ = v.

The 
oe�
ient θ in the mouth boundary 
ondition is the normalized a
ousti


resistan
e � a dimensionless 
oe�
ient regulating the radiation resistan
e at

lips.

We shall begin with a path γ : [0, LV T ] → R
3, whi
h is parameterized by

its ar
h length, LV T being the length of the vo
al tra
t. This is the 
enterline

of our 
urved tube. We de�ne the 
urvature of the path at point γ(s) by

κ(s) := ||γ′′(s)||.
An orthonormal 
oordinate system is �xed to every point of γ. The three

unit ve
tors are de�ned by

t(s) := γ′(s), n(s) :=
t
′(s)

κ(s)
and b(s) := t(s)× n(s).

The ve
tor t(s) is 
alled the tangent ve
tor, n(s) is the normal ve
tor and b(s)
is the binormal ve
tor. This orthonormal 
oordinate system is 
alled the Frenet

frame and it is a right hand 
oordinate system for R
3 at all points of the 
urve,

where κ(s) > 0. In the derivation of the Webster's equation it is assumed that

κ(s) > 0 ∀ s ∈ [0, LV T ].
Next we shall form the tube around the 
enterline γ. To every point γ(s)

we atta
h a γ(s)-
entered dis
 with radius R(s), whi
h lies on the plane whose

normal ve
tor is t(s). This dis
 is denoted by Γ(s) and it is parameterized with

polar 
oordinates by using ve
tors n(s) and b(s) as the basis ve
tors for the

plane. Thus the tube representing the vo
al tra
t 
an be written in parameter-

ized form

Ω =
{

γ(s) + r cos θn(s) + r sin θb(s)
∣

∣ s ∈ [0, LV T ], r ∈ [0, R(s)), θ ∈ [0, 2π)
}

.

The parameters (s, r, θ) 
an be used as 
oordinates in the tube and hen
eforth

they are 
alled the tube 
oordinates. We make a standing assumption

η(s) := R(s)κ(s) < 1 ∀s ∈ [0, LV T ]

whi
h says that the tube does not fold onto itself guaranteeing that the 
oordi-

nate transformation (s, r, θ) 7→ (x, y, z) is bije
tive. The number η(s) is 
alled

the 
urvature ratio.

3.1.2 The derivation of the Webster's equation

As mentioned before, a 
omplete derivation will not be presented here, and the

readers looking for one are referred to Lukkari and Malinen (2008b). First, it is

assumed that Φ is the solution of (3.1). Then the averaged solution is de�ned as

Φ(s, t) :=
1

A(s)

∫

Γ(s)

ΦdA, (3.2)

where A(s) = πR(s)2.
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The next steps in the derivation of the Webster's equation in Lukkari and

Malinen (2008b) are rather lengthy and would require mu
h more preliminary

work, so unfortunately some of the de�nitions presented here are not very well-

motivated. After writing the wave equation in integral form and using the

divergen
e theorem, Neumann boundary 
onditions on the walls of the VT, a

fun
tion L(·, ·) is de�ned by

L(s0, s1) :=

∫

Γ(s1)

∂Φ

∂s
dA−

∫

Γ(s0)

∂Φ

∂s
dA−

∫ s1

s0

(

∫

Γ(s)

1

c2Ξ2

∂2Φ

∂t2
dA

)

ds, (3.3)

where Ξ(s, r, θ) := (1− rκ(s) cos θ)
−1

is the 
urvature fa
tor. To gain some

motivation for this de�nition, let us note that the �rst two terms here 
an be

interpreted as the most signi�
ant term of ∆Φ
Ξ integrated over the pie
e of the

tube between Γ(s0) and Γ(s1).

To obtain the desired equation it is ne
essary to study the limit lims′→s
L(s,s′)
s′−s .

In Lukkari and Malinen (2008b) it is shown that (under 
ertain smoothness as-

sumptions) we have for the limit

lim
s′→s

L(s, s′) =

∫

Γ(s)

1

Ξ
∇

(

1

Ξ

)

· ∇ΦdA. (3.4)

The right hand side of (3.4) is the residual of ∆Φ
Ξ that was not in
luded in the

de�nition of L. It is assumed to be small and it is in
luded in the error term.

Next, this limit of L is 
al
ulated starting from the de�nition (3.3).

The �rst two terms in (3.3) are dealt with by showing that for the averaged

solution (3.2) it holds that

A(s)
∂Φ

∂s
= −A′(s)Φ +

∂

∂s

(

∫

Γ(s)

ΦdA

)

= −A′(s)Φ +

∫

Γ(s)

∂Φ

∂s
dA+

A′(s)

2π

∫ 2π

0

Φ(s,R(s), θ)dθ.

It now dire
tly follows that

∫

Γ(s)

∂Φ

∂s
dA = A(s)

∂Φ̄

∂s
+A′(s)

(

Φ̄(s)−
1

2π

∫ 2π

0

Φ(s,R(s), θ)dθ

)

. (3.5)

Note that the expression inside the parenthesis is a di�eren
e of two means of

Φ, on Γ(s) and ∂Γ(s), respe
tively.
For the last term in (3.3) the limit of the desired form is easy to see and
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thus, by using (3.5) we get for the limit

lim
s′→s

L(s, s′)

s′ − s
=

∂

∂s

(

∫

Γ(s)

∂Φ

∂s
dA

)

−
1

c2
∂2

∂t2

(

∫

Γ(s)

Φ

Ξ2
dA

)

=
∂

∂s

(

A(s)
∂Φ̄

∂s

)

−
1

c2
∂2

∂t2

(

∫

Γ(s)

Φ

Ξ2
dA

)

(3.6)

+
∂

∂s

(

A′(s)

(

Φ̄−
1

2π

∫ 2π

0

Φ(s,R(s), θ)dθ

))

.

Here the �rst term looks good, and the last term is in
luded in the error. How-

ever, in the middle term we have Ξ−2 multiplying Φ inside the integral, and

sin
e it depends on r and θ, it 
annot be brought out from the integral without

due punishment. Therefore, we shall de�ne the sound speed 
orre
tion fa
tor as

the average of Ξ−2:

1

Σ(s)2
:=

1

A(s)

∫

Γ(s)

dA

Ξ2
= 1 +

1

4
η(s)2,

where the latter equivalen
e is obtained by a straightforward 
al
ulation from

the de�nition of Ξ.
In the sense of least squares, the average Σ(s)−2 is the best 
onstant estimate

for fun
tion Ξ(s, r, θ)−2 over Γ(s). We de�ne the error fun
tion

E(s, r, θ) :=
1

Ξ(s, r, θ)2
−

1

Σ(s)2
(3.7)

allowing us to write the middle term in (3.6) in the form

1

c2
∂2

∂t2

(

∫

Γ(s)

Φ

Ξ2
dA

)

=
A(s)

c2Σ(s)2
∂2Φ

∂t2
+

∫

Γ(s)

E

c2
∂2Φ

∂t2
dA. (3.8)

By using (3.4), (3.6) and (3.8) we get

1

c2Σ(s)2
∂2Φ

∂t2
−

1

A(s)

∂

∂s

(

A(s)
∂Φ

∂s

)

= F (s, t) +G(s, t), (3.9)

where F and G 
ontain the error terms gathered from (3.4), (3.6) and (3.8):

F (s, t) :=
1

A(s)

∂

∂s

(

A′(s)

(

Φ̄−
1

2π

∫ 2π

0

Φ(s,R(s), θ)dθ

))

,

G(s, t) :=
1

A(s)

∫

Γ(s)

(

E∆Φ−
1

Ξ
∇

(

1

Ξ

)

· ∇Φ

)

dA.

Now F (s, t) 
ontains a di�eren
e of two averages of the solution of the wave

equation. This di�eren
e is small, if the tube area is small. In G(s, t) the term
∆Φ is limited and the error fun
tion E(s, r, θ) in (Eq. (3.7)) is a di�eren
e of
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a fun
tion and its average over the dis
. This di�eren
e small, if the 
urvature

fa
tor is 
lose to one (E ≡ 0 for an un
urved tube). The se
ond term in

G(s, t) is small if the 
urvature fa
tor η(s) and the 
omponents of ∇Φ that are

perpendi
ular to the tube 
enterline are small.

Now, for the solution of the wave equation, Eq. (3.9) holds. The Webster's

horn equation with 
urvature is

1

c2Σ(s)2
∂2ψ

∂t2
−

1

A(s)

∂

∂s

(

A(s)
∂ψ

∂s

)

= 0. (3.10)

3.2 Numeri
al solution

We solve numeri
ally the Webster's equation (3.10) with boundary 
onditions


orresponding to the wave equation (3.1), that is

{

∂ψ
∂s (0, t) = −vo(t)

ψt(LV T , t) + θc∂ψ(LV T ,t)
∂s = 0,

(3.11)

where LV T denotes the length of the vo
al tra
t. Here vo(t) is the glottal �ow
derived in Se
tion 2.2. Note that the 
hannel area after glottis, denoted by Ao
in Se
tion 2.2, is equal to A(0) allowing vo to be used dire
tly as the VT input.

The latter boundary 
ondition models boundary dissipation in the form of �ow

resistan
e p = θρcv.

3.2.1 Weak formulation of the Webster's equation

Let us �rst write a weak formulation of the Webster's equation. First, we shall

write the Webster's equation in �rst order form by introdu
ing an auxiliary

fun
tion π(s, t) = ρψ̇(s, t). Then we de�ne W := 1
A(s)

∂
∂s

(

A(s) ∂∂s
)

, and we get

d

dt

[

ψ
π

]

=

[

0 ρ−1

ρc(s)2W 0

] [

ψ
π

]

.

Hen
eforth let L :=

[

0 ρ−1

ρc(s)2W 0

]

: Z → X , where

Z :=
(

H1(0, LV T ) ∩H2(0, LV T )
)

×H1(0, LV T );

X := H1(0, LV T )× L2(0, LV T ).

We equip the Hilbert spa
e X with the inner produ
t

〈[

y1
y2

]

,

[

x1

x2

]〉

X

:=
1

2

(

ρ

∫ LV T

0

y′1(s)x
′

1(s)A(s)ds+
1

ρc2

∫ LV T

0

y2(s)x2(s)
A(s)

Σ(s)2
ds

)

.

The norm indu
ed by this inner produ
t is the physi
al energy norm.
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The endpoint 
ontrol and observation operators are de�ned by

G

[

z1
z2

]

:=

[

−z′1(0)
z2(LV T ) + θρcz′1(LV T )

]

and H

[

z1
z2

]

:= z2(0),

where (z1 z2)
T ∈ Z. Now the vo
al tra
t model 
an be written as a linear

boundary 
ontrol system























ż(t) = Lz(t)

Gz(t) =

[

vo(t)
0

]

Hz(t) = pc(t)
z(0) = z0

(3.12)

Here the �rst, se
ond and fourth equation de�ne the solution z(t) and the output
is given by the third equation. Malinen and Sta�ans (2006) and Malinen and

Sta�ans (2007) treat the solvability of su
h boundary 
ontrol systems and in

Lukkari and Malinen (2008a) it is shown that (3.12) satis�es the 
onditions

required for 
onservativity and solvability. The reason why the 
ontrol operator

G is de�ned in this manner is that now the mouth boundary term is in
luded

in the 
ontrol term. Thus, the system 
an be shown to be 
onservative also

with boundary 
onditions (3.11) with a small modi�
ation of the argument in

Malinen and Sta�ans (2007).

In order to obtain the weak formulation, we take a test fun
tion

[

v(s)
0

]

∈ X

and take the inner produ
t of the top row of (3.12) and this test fun
tion:

〈[

ψ̇(s, t)
π̇(s, t)

]

,

[

v(s)
0

]〉

X

=

〈

L

[

ψ(s, t)
π(s, t)

]

,

[

v(s)
0

]〉

X

. (3.13)

For the left hand side of this we get

〈[

ψ̇(s, t)
π̇(s, t)

]

,

[

v(s)
0

]〉

X

=
ρ

2

∫ LV T

0

∂2ψ(s, t)

∂s∂t

∂v(s)

∂s
A(s)ds

and the right hand side

〈

L

[

ψ(s, t)
π(s, t)

]

,

[

v(s)
0

]〉

X

=

〈[

0 ρ−1

ρc(s)2W 0

] [

ψ(s, t)
π(s, t)

]

,

[

v(s)
0

]〉

X

=
ρ

2

∫ LV T

0

ρ−1 ∂π(s, t)

∂s

∂v(s)

∂s
A(s)ds.

We do the same thing for another test fun
tion

[

0
v(s)

]

∈ X to obtain

〈[

ψ̇(s, t)
π̇(s, t)

]

,

[

0
v(s)

]〉

X

=

〈

L

[

ψ(s, t)
π(s, t)

]

,

[

0
v(s)

]〉

X

. (3.14)
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Now the left hand side is
〈[

ψ̇(s, t)
π̇(s, t)

]

,

[

v(s)
0

]〉

X

=
1

2ρc2

∫ LV T

0

∂π(s, t)

∂t
v(s)

A(s)

Σ(s)2
ds

and the right hand side

〈

L

[

ψ
π

]

,

[

0
v(s)

]〉

X

=

〈[

0 ρ−1

ρc(s)2W 0

] [

ψ
π

]

,

[

0
v(s)

]〉

X

=
1

2ρc2

∫ LV T

0

ρc2Σ(s)2Wψ(s, t)v(s)
A(s)

Σ(s)2
ds

=
1

2

∫ LV T

0

∂

∂s

(

A(s)
∂ψ(s, t)

∂s

)

v(s)ds.

Partial integration yields

〈

L

[

ψ
π

]

,

[

0
v(s)

]〉

X

=
1

2

∣

∣

∣

∣

LV T

0

A(s)
∂ψ(s, t)

∂s
v(s)−

1

2

∫ LV T

0

A(s)
∂ψ(s, t)

∂s

∂v(s)

∂s
ds

(3.15)

3.2.2 Spatial dis
retization

The basis fun
tions of the element spa
e are formed next. First, the vo
al tra
t

is divided into N sli
es of equal length ∆s := LV T /N . Then, we shall de�ne

pie
ewise linear fun
tions vj(s), j = 1, ..., N + 1 by

vj(s) :=















s−(j−2)∆s
∆s , s ∈ [(j − 2)∆s, (j − 1)∆s],

− s−j∆s∆s , s ∈ [(j − 1)∆s, j∆s],

0, s /∈ [(j − 2)∆s, j∆s].

For j = 1, the de�nition on the top row, and for j = N + 1 the de�nition on

the middle row do not apply. The fun
tions vj are 
alled hat fun
tions be
ause

of their form. The fun
tion vj rea
hes value 1 at point s = (j − 1)∆s. This

means, that for the �rst basis fun
tion v1(0) = 1 and for the last basis fun
tion

vN+1(LV T ) = 1.
Thus, we are looking for an approximate solution of (3.12) of the form

[

ψ(s, t)
π(s, t)

]

=

N+1
∑

i=1

(

ξi(t)

[

vi(s)
0

]

+ µi(t)

[

0
vi(s)

])

, (3.16)

su
h that the residual is orthogonal to all of the basis fun
tions. If we now

insert this into Eqs. (3.13) and (3.14) and instead of some v(s) we take the

inner produ
t with all the basis fun
tions, we get 2(N +1) equations whi
h 
an

be written in matrix form
{

ρKξ̇(t) = Kµ(t),
Mµ̇(t) = −Kξ(t)−Rµ+ b(t)

(3.17)
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orresponding to (3.12). Here

Mij =
1

2ρc2

∫ LV T

0

vi(s)vj(s)
A(s)

Σ(s)2
ds,

Kij =
1

2

∫ LV T

0

v′i(s)v
′

j(s)A(s)ds, (3.18)

Rij =

{

A(LV T )
2θρc , when i = j = N + 1;

0, otherwise,

bj(t) =

{

A(0)
2 vo(t), when j = 1;

0, when j 6= 1.

The damping matrix R and the load ve
tor b are gathered from the substitu-

tion term in (3.15) by using the boundary 
onditions (3.11) for the Webster's

equation. Sin
e the sti�ness matrix K is invertible, it 
an be eliminated from

the �rst equation of (3.17).

3.2.3 Temporal dis
retization

Next task is the time dis
retization. We repla
e ξ(t) and µ(t) with approximative

solutions ξn ≈ ξ(tn) and µn ≈ µ(tn), for whi
h the Crank-Ni
holson method

(see Malinen and Havu (2007)) 
an be written as
{

ρ ξ
n
−ξn−1

∆t = µn+µn−1

2 ,

M
µn

−µn−1

∆t = −K
ξn+ξn−1

2 −R
µn+µn−1

2 + b(tn),

To avoid inverting an ill-
onditioned matrix, this system of equations is written

as a double re
ursion instead of a 2(N + 1)-sized matrix equation. Thus, we

eliminate µn from the lower equation obtaining the update equations
{ (

∆t
2 K + 2ρ

∆tM + ρR
)

ξn =
(

−∆t
2 K + 2ρ

∆tM + ρR
)

ξn−1 + 2Mµn−1 + ∆tb(tn)
ρξn − ∆t

2 µ
n = ρξn−1 + ∆t

2 µ
n−1

(3.19)

so ξn is �rst solved from the �rst equation by matrix inversion, and it is then

inserted to the se
ond equation from whi
h µn is solved.

The time steps are the same that are used in solving the equations of motion

and the ODE for vo, so we readily have the value vo(tn), whi
h is needed in the

evaluation of b(tn). Sin
e the time step is 
onstant ex
ept on the steps when

the glottis 
loses or opens, the inverse of the matrix on the left hand side of the

�rst equation in (3.19) is pre-
omputed in order to make the simulation faster.

When time step is not 
onstant, the matrix equation must be solved separately.

3.2.4 Resonan
e model

Before performing any time domain simulations, we shall 
ompute the formant

frequen
ies from the Webster's equation. This will be done �rst for an un
urved

tube and then for a 
urved one.



CHAPTER 3. THE VOCAL TRACT MODEL 28

The resonan
es of the Webster's equation 
an be solved by �nding the dis-


rete frequen
ies λ and their 
orresponding eigenfun
tions (pressure distribu-

tions) [ψλ(s), πλ(s)]
T satisfying















L

[

ψλ
πλ

]

= λ

[

ψλ
πλ

]

;

G

[

ψλ
πλ

]

= 0.
(3.20)

The time harmoni
 extension

[

ψλ(s, t)
πλ(s, t)

]

= eλt
[

ψλ(s)
πλ(s)

]

of the eigenfun
tion


learly satis�es Eq. (3.12). Thus, the imaginary part of λ is an (angular)

resonan
e frequen
y.

Again, by writing the weak formulation for Eq. (3.20), setting the 
on-

trol to zero and applying spatial dis
retization, we obtain a generalized matrix

eigenvalue problem

Kµλ = λ2ρMµλ. (3.21)

In order to be able to 
ompare these frequen
ies with those given by the 3-D wave

equation (
omputed in Hannukainen et al. (2007)), we have used the Diri
hlet

boundary 
ondition at the mouth here. This explains the absen
e of the damping

matrix R. Also K and M are N ×N matri
es instead of (N +1)× (N +1) as in
Eq. (3.17). If the number of elements N is high enough, the eigenvalues of the

dis
retized system are good approximations of the eigenvalues of the original

system, espe
ially in the 
ase of the smallest eigenvalues. In our simulations we

have used N = 100.

3.2.5 Data

We shall use the MRI data provided by Olov Engwall from KTH, Sto
kholm.

The raw data was 
olle
ted from a native male Swedish speaker pronoun
ing a

prolonged vowel [ø:℄ in supine position. Engwall and Badin (1999) des
ribe the

MR imaging pro
edure and also present the 
orresponding formant measure-

ment data.

The same data was also used in a 3-dimensional wave equation model by

Hannukainen et al. (2007). For this reason, we 
an 
ompare the 1-dimensional

Webster's equation to the a
tual 3-dimensional wave equation � at least in

frequen
y domain.

The MRI data 
onsists of 29 
ross-se
tional sli
es of the vo
al tra
t. However,

the sli
es were not perpendi
ular to the 
enterline of the tra
t, so the sli
es 
ould

not be used as su
h. First, we determined the 
enterline of the vo
al tra
t by


onne
ting the 
enters of mass of ea
h sli
e. Then, a tangent ve
tor of the path

was numeri
ally evaluated at all 29 points, and the sli
es were proje
ted on

the plane perpendi
ular to this tangent ve
tor. The pro
essed data is shown

in Fig. 3.1. The areas of ea
h of the sli
es were then 
al
ulated as well as the


ir
umferen
es whi
h are needed for evaluating the hydrauli
 radius as des
ribed

in Se
tion 2.2. The 
ross-se
tional area is shown in Fig. 3.2 and the hydrauli
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Figure 3.1: The pro
essed MRI data used for 
onstru
ting the VT-model and

the 
enterline of the tra
t. The units are in meters. The mouth is at the top

left 
orner and the glottis at the lower right 
orner.
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Figure 3.2: The 
ross-se
tional area of the VT, perpendi
ular to the VT 
en-

terline. The s-axis is parameterized as the distan
e from the glottis measured

along the 
enterline.
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Figure 3.3: The 
urvature ratio of the VT-tube.

radius in Fig. 3.4. In these �gures, the s-axis is parameterized by the ar
h

length of the 
enterline.

Finally, the sound speed 
orre
tion fa
tor was 
omputed by numeri
ally

evaluating the 
urvature κ(s) of the 
enterline and approximating the tube

radius by R(s) =
√

A(s)/π. Fig. 3.3 shows the 
urvature ratio η(s) along the

VT. Let us note that the 
urvature ratio is always distin
tly less than one, as

assumed in the derivation of the Webster's equation. Even though the 
urvature

ratio varies a lot along the VT, the sound speed 
orre
tion fa
tor Σ(s)−2 =
1 + 1

4η(s)
2 varies between 1 and 1.132.

The value for the normalized a
ousti
 resistan
e θ (see Eq. (3.1) and the

expression of Rij in Eq. (3.18)) was experimentally 
hosen to be 0.06. There

are many approa
hes in the literature for the VT termination and most of these

produ
e a frequen
y dependent (and 
omplex) impedan
e.

One approa
h is to use the impedan
e for a piston-like sour
e set in a sphere.

This kind of model yields an analyti
al expression in form of an in�nite series.

For this reason, a more widely used model is obtained by letting the ratio of the

radii of the piston and the sphere approa
h zero 
orresponding to a piston set

into an in�nite wall. Then the a
ousti
 resistan
e fa
tor θ with low frequen
ies

is approximately
ω2r2m
2c2 where ω is the angular frequen
y of the a
ousti
 radiation

and rm is the radius of the piston. Both of these approa
hes are treated in e.g.

Morse and Ingard (1968) (Chapter 7). Our 
hoi
e for θ 
orresponds to sour
e

frequen
y of around 2200 Hz.
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Figure 3.4: The hydrauli
 radius of the vo
al tra
t by equation (2.8) and the

data presented in Se
tion 3.2.5.

3.2.6 Results

The lowest formant frequen
ies F1,...,F4 for an un
urved (Σ(s) ≡ 1) and a


urved tube are presented in Table 3.1. For 
omparison, there are also the


orresponding frequen
ies from a 3-D wave equation model by Hannukainen

et al. (2007) and the formants measured by Engwall and Badin (1999) from

the same test subje
t. To make the 
omparison reasonable, we have used the

Diri
hlet boundary 
ondition at mouth as in Hannukainen et al. (2007).

Our prin
ipal purpose is to 
ompare the Webster's equation to the 3-D wave

equation. These formants are very 
lose to ea
h other. However, for some

reason, the un
urved tube seems to be even better than the 
urved tube. Some

of the reasons for the dis
repan
y between the 
omputed and measured formants

is dis
ussed in Hannukainen et al. (2007).

Table 3.1: Formants for [ø:℄ in kHz, from our Webster's equation in an un
urved

and a 
urved tube, from the 3-D wave equation by Hannukainen et al. (2007)

and formants measured by Engwall and Badin (1999).

F1 F2 F3 F4

Webster, un
urved 0.66 1.35 2.68 3.76

Webster, 
urved 0.64 1.32 2.64 3.71

HLMP07 0.68 1.35 2.71 3.79

EB99 0.50 1.06 2.48 3.24
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Fig. 3.5 shows the pressure distributions (element approximations of

πλ =
∑N+1
k=1 µλ,kvk(s), see Eq. (3.21)) related to formant frequen
ies F1,...,F4.

These are 
omputed for the 
urved tube, but here the di�eren
e between the


urved and un
urved tube was insigni�
ant. When 
omparing this with the


orresponding �gure (Fig. 2) in Hannukainen et al. (2007), it is very di�
ult to

see any di�eren
e. This 
ould be expe
ted be
ause the pressure varies mainly

in the dire
tion of the VT. However, they report a weak 
ross-mode resonan
e

in the oral 
avity related to F4. This kind of phenomenon is, of 
ourse, not

a

ounted for by a 1-D model su
h as the Webster's equation.

Figure 3.5: Pressure distributions 
orresponding to formants F1,...,F4.



Chapter 4

Full model simulations

In this 
hapter we shall present the results of time domain simulations of the full

model. In Se
tion 4.1 the model is simulated as a feedforward model so that the

VT model is simply ex
ited with the glottis pulse and the pressure at the lips

is observed. In Se
tion 4.2.1 we shall investigate the e�e
t of the me
hani
al

feedba
k from the VT to the glottis introdu
ed in Se
tion 2.3.1. Finally, in

Se
tion 4.2.2 the glottis model is 
oupled to a tube with 
onstant area fun
tion.

The length of this tube is varied for tuning the lowest formant frequen
y.

4.1 Simulations without feedba
k

First simulation was performed with the same parameters as the �rst glottis

model simulation (Fig. 2.4). That is, symmetri
 glottis parameters and the

fundamental frequen
ies of the vo
al fold vibrating modes were 100 Hz and

105 Hz. The result is shown in Fig. 4.1. The top pi
ture shows the volume

�ows through the glottis and the mouth. Note that the a
ousti
 vibration does

not pro
eed through the open glottis but the �ow there is fully determined by

the glottal �ow model. The pressure at mouth opening is shown in the se
ond

pi
ture and the spe
trum of this signal in the third pi
ture in Fig. 4.1. The

lowest pi
ture shows the spe
trum of the glottal �ow. The spe
tra 
ontain peaks

at frequen
ies mF0, where m is an integer and F0 is the vo
al fold os
illation

frequen
y (118 Hz). The VT formant frequen
ies 
annot be seen as su
h, but

in the spee
h signal spe
trum the peaks that are 
lose to formant frequen
ies

are 
learly ampli�ed. For example the �rst formant frequen
y F1 = 640 Hz is

between the peaks at 5F0 and 6F0. Between every multiple of F0 there are �ve

subharmoni
s with intervals of 16.8 Hz in both spe
tra.

33
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Figure 4.1: The volume �ows through the glottis (VT-model input) and through

the mouth and the pressure at mouth in a feedforward simulation. Below there

are the spe
tra of the pressure at mouth and the glottal �ow.

4.1.1 Inverse �ltering the obtained signal

In order to validate our model, the pressure at mouth was inverse �ltered by

iterative adaptive inverse �ltering (IAIF) method developed in Alku (1992). For

this we used a MATLAB-based toolkit, TKK Aparat (see Airas (2008)). This

method estimates the VT transfer fun
tion in an iterative manner using all-pole

modelling. This transfer fun
tion is then used together with a lip radiation

model for inverse �ltering.

in the Aparat the maximum number of formant frequen
ies to be modelled

by the vo
al tra
t �lter 
an be 
hosen by the user as well as the value of the
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�rst order lip radiation model. Fig. 4.2 shows the glottal �ow given by our

model and the inverse �ltered signal. In the transfer fun
tion estimation we set

the maximum number of the formants to be �tted to 11 and the lip radiation


oe�
ient to 0.97. Table 4.1 shows the values of the estimated VT formants,

that were below one half of the sampling frequen
y (here 19 kHz), and those


omputed from the Webster's equation with boundary 
onditions (3.11). Note

that the formants in Table 3.1 were 
omputed using Diri
hlet boundary 
ondi-

tion at mouth, whi
h explains the small dis
repan
y between these two. With

greater values of the a
ousti
 resistan
e 
oe�
ient θ this dis
repan
y obviously

grows. Three lowest formants are estimated rather well, whereas the rest are

systemati
ally smaller.

The glottal �ow estimated by inverse �ltering seems to have problems in


apturing the rapid ending of the pulse. The reason for this is that rapid 
hanges

in the signal 
orrespond to higher frequen
ies in the spe
trum. Sin
e there

seems to be a systemati
 error in the estimated transfer fun
tion related to the

higher formants, it 
an be expe
ted that these 
hanges 
ause error in the inverse

�ltering pro
edure.

Table 4.1: Formants for [ø:℄ in kHz given by our Webster's equation and for-

mants estimated by the IAIF method

F1 F2 F3 F4 F5 F6 F7 F8 F9

Webster 0.65 1.31 2.65 3.71 5.15 6.81 7.23 8.30 9.23

Estimated 0.66 1.32 2.61 3.65 5.06 6.47 6.84 7.73 8.62

Figure 4.2: The glottal �ow obtained by inverse �ltering and the �ow given by

our model
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4.2 Simulations with feedba
k

4.2.1 Realisti
 VT-geometry

The me
hani
ally 
oupled 
ounter pressure from the vo
al tra
t always seemed

to have a damping e�e
t on the vo
al 
ords. For this reason we had to diminish

the glottal damping terms bij from 0.1 Nm/s in the feedforward system to

0.065 Nm/s in the feedba
k system to sustain 
ontinued os
illation. As before,

this value was found experimentally. Other parameters were �rst kept the same

as earlier.

Here the e�e
t of the feedba
k is rather mild, even so, that the di�erent

situations 
ould not be identi�ed only by observing the pressure at mouth.

A small ripple 
an be seen in the glottal area fun
tion, but the glottal �ow

pulse is not very sensitive to this ripple. The spe
trum of the glottal �ow is

not in�uen
ed by the feedba
k. A slight additional skewing of the pulse 
an

be observed. If we 
al
ulate the ratio of the pulse a

eleration time to the

whole open phase duration, that is Tmax−T1

T2−T1

(see Se
tion 2.4.4) it is 90.6 % for

the system without feedba
k and 91.5 % for the system with feedba
k. The


hange in the glottis dynami
s is illuminated in Fig. 4.3, whi
h shows the

phase diagrams of the glottal os
illation in two 
ases. The upper left pi
ture

Figure 4.3: The phase diagrams of the glottal os
illation from a simulation

without feedba
k (top) and a simulation with feedba
k (bottom). Pi
tures on

the left show the behaviour of the 
ords in the narrow end of the glottis and

pi
tures on the right show the behaviour of the 
ords in the wide end.
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shows the 
urve (w11(t), ẇ11(t)) and the upper right pi
ture shows the 
urve

(w12(t), ẇ12(t)) in the simulation without feedba
k. In the lower pi
tures there

are the same 
urves in the simulation with feedba
k. In both 
ases the os
illation

is perfe
tly periodi
, meaning that the 
y
les in the phase diagrams are stable.

The vibration pattern of w12 
hanges signi�
antly when the feedba
k is present,

but this 
ould be expe
ted sin
e the aerodynami
 for
e is mu
h weaker in the

wide end of the glottis thus making the feedba
k more in�uential.

4.2.2 Straight tube as the resonator

More interesting is what happens when the vo
al fold vibration frequen
y F0 is


loser to the lowest formant frequen
y F1 or when 2F0 ≈ F1. Here this e�e
t

is studied by using an un
urved tube shown in Fig. 4.4 as the resonator. The

area of the tube at s = 0 is 
hosen so that it 
oin
ides with A(0) of the realisti

geometry used earlier. The area after the expansion is the same as the area of

mouth. Also the boundary 
onditions in both ends of the tube were the same

as in the earlier simulations with the realisti
 VT geometry (Eq. (3.11)).

Two sets of simulations were performed. In the �rst one, the glottis model

parameters were the same as earlier. The tube length was varied between

0.20 m ... 0.71 m thus spanning the frequen
y range 123.2 Hz ... 438.8 Hz

overing three multiples of the sour
e frequen
y F0. These tube lengths are

rather unrealisti
 
onsidering human VT, but the sole purpose of this experi-

ment is to study the feedba
k e�e
t when F0 and F1 are 
lose to ea
h other.

By varying only the tube length we 
an ex
lude any internal 
hanges in the

glottis so that all 
hanges in the glottal vibration pattern are 
aused by the


oupling. In reality, F0 − F1 
rossovers 
an o

ur, but obviously with higher

sour
e frequen
ies F0 (see Titze et al. (2008)).

The spe
trogram with di�erent values of F1 is shown in Fig. 4.6. This

is a slightly nontypi
al spe
trogram, be
ause the x-axis variable is not time,

but the formant frequen
y F1. All simulations are independent with default

initial 
onditions. The simulations have been long enough and the beginning

of ea
h simulation has been ex
luded from the data, so that there is no e�e
t

Figure 4.4: The geometry for testing the feedba
k e�e
t for di�erent resonator

formant frequen
ies F1. The length of the tube was varied for tuning F1.
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Figure 4.5: The sour
e frequen
y F0 as a fun
tion of the lowest VT formant

frequen
y F1 in the �rst set of simulations with the straight tube. The auxiliary

lines are F0 = F1, 2F0 = F1 and 3F0 = F1.

Figure 4.6: The spe
trogram of the pressure signal when F1 is varied. The line

shows F1 in the spe
tra and the diamonds show the sour
e frequen
y F0 in ea
h

simulation.
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from initial transitions. One simulation 
orresponds to one tube length. The

�gure also shows the sour
e frequen
ies F0 in every simulation and an auxiliary

line showing F1 in the spe
trogram. The sour
e frequen
ies are also plotted

in a more illustrative s
ale in Fig. 4.5 with lines F0 = F1, 2F0 = F1 and

3F0 = F1. This pi
ture 
learly shows what happens to F0 when F1 
rosses some

of its multiples. When F1 ≈ F0, the sour
e frequen
y lo
ks in to the formant

frequen
y, until it gets too far from the natural sour
e frequen
y. A similar but

weaker phenomenon 
an be seen when 2F0 ≈ F1 (and also when 3F0 ≈ F1).

In the se
ond set of simulations the glottis model was tuned so that its

natural frequen
y was higher (233 Hz). This was a
hieved by in
reasing the

sti�ness 
oe�
ients to k11 = k21 = 682 N/m and k12 = k22 = 379.5 N/m. Also

the glottal gap was narrowed to g = 0.2 mm and the subglottal pressure was

in
reased to 1800 Pa. Now the tube length was varied between 0.16 m ... 0.50 m
so that the 
orresponding F1 frequen
y range was 175 Hz, ..., 560 Hz 
overing

two multiples of F0. The sour
e frequen
y's dependen
e on F1 is shown in Fig.

4.7. Now F0 remains lo
ked in to F1 mu
h longer and F0 
limbs as high as

400 Hz. After the frequen
y drop, F0 settles on a level about 20 Hz higher

than before the �
limb�. The e�e
t of 2F0 − F1-
rossover is milder now than

in the �rst set. The bump in F0 in this 
rossover is here only about 8.5 Hz

ompared to 13 Hz in the �rst set.
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Figure 4.7: The sour
e frequen
y F0 as a fun
tion of the lowest VT formant fre-

quen
y F1 in the se
ond set of simulations with the straight tube. The auxiliary

lines are F0 = F1 and 2F0 = F1.

4.3 Comparison to other works

Titze (2008) has 
reated a nonlinear sour
e-�lter 
oupling theory and Titze

et al. (2008) 
reated three vo
al exer
ises for human test subje
ts for studying

this 
oupling in pra
tise. They reported that when the intera
tion between the

sour
e and �lter is mild, that is, when the dominant sour
e frequen
y lies well
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below the lowest VT formant frequen
y, the e�e
t of the 
oupling 
an be seen in

the glottal �ow pulse skewing and pulse ripple. Our results are well in line with

this observation (see Se
tion 4.2.1 and Fig. 4.3). When the sour
e frequen
y

F0 and the lowest formant frequen
y F1 are 
loser to ea
h other (or even when

2F0 ≈ F1), the feedba
k 
an 
ause a sudden jump in the sour
e frequen
y. Our

model reveals a syn
hronization phenomenon. This means, that when F1 is


lose to F0 or some of its multiples, the os
illation frequen
y of the mass-spring

system 
hanges so that the two systems are syn
hronized. This syn
hronization


ould 
ontribute to some of the phenomena reported by Titze et al. (2008) (Figs.

5C and 10D).

They also reported two other kinds of bifur
ations besides frequen
y jumps,

namely subharmoni
 regimes (spe
tral peaks at frequen
ies k2F0, k = 1, 3, 5, . . . )
and 
haoti
 os
illation. Our model reveals �ve subharmoni
s between every

multiple of F0, and they are stronger near 2F0−F1 
rossover but not remarkably

(see Fig. 4.6). Chaoti
 os
illation never o

urred in our simulations, even when

the subglottal pressure psub was in
reased up to 3300 Pa, or when the glottis

model parameters were set unsymmetri
 (m21 = 1.2 ·m11).

Hatzikirou et al. (2006) have also 
reated a similar two mass model of glottis

and simulated it with a tube of varying length as the a
ousti
 load. They

also report frequen
y pulling by F1. In addition, the subharmoni
s o

ur mu
h


learer in their simulations as they do here.



Chapter 5

Dis
ussion

Chapter 2

The primary target of this work was to 
onstru
t a low order nonsymmetri


mass-spring model with a 1-D �ow model. This task was 
arried out in Chapter

2. The used �ow model takes into a

ount vis
ous pressure losses in the glottis

and VT. The vo
al tra
t inertan
e is also in
luded in the �ow equation, Eq.

(2.12). However, the �ow pulse (Fig. 2.7) seems to be slightly too mu
h skewed

towards the end of the open phase. Reasons for this lie in our harsh assump-

tions that the �ow is laminar and in
ompressible. Be
ause of the laminarity

assumption, the pressure loss in the glottis and vo
al tra
t given by our model

is likely to be smaller than in reality. This is be
ause turbulent �ow and ex-


luded phenomena on the tissue surfa
e (e.g. mu
osal vibrations) might 
ause

energy dissipation to heat.

The in
ompressibility assumption has an e�e
t on the inertia of the air 
ol-

umn in the VT. (
oe�
ient Ciner in Eq. (2.12)). Be
ause the �ow is, in fa
t,


ompressible, there is hidden spring rea
tion whi
h would temporally divide the


hange in momentum in a di�erent way. For this reason the inertia 
oe�
ient

in the model may appear too large. Also the pressure loss in the VT e�e
tively

grows, if the in
ompressibility assumption is omitted.

Instead of 
onstru
ting a dynami
al 
ompressibility model, the inertan
e

Ciner and the pressure loss 
oe�
ients Cg and CV T 
ould be �tted in an optimal

way so that the pulse would mat
h as well as possible the glottal pulses obtained

by inverse �ltering. This pro
edure is illustrated in Fig. 5.1. It shows an LF-

model pulse whi
h was obtained by �rst inverse �ltering with the IAIF method a

natural [a℄ vowel, produ
ed by a male speaker using pressed phonation. The LF-

model parameters were obtained using the Aparat toolkit. In 
reating pressed

spee
h, subje
ts typi
ally in
rease addu
tion of their vo
al folds, hen
e resulting

in a glottal �ow with long 
losed phase and a short 
losing phase.

The parameters for the modelled pulse are obtained by 
reating a pulse

using Eq. (2.12) and approximating ∆W1 = A sin(ωt), where t ∈ [0, π/ω]. The
squared error between this pulse and the LF-pulse was minimized by adjusting

41
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the parameters Ciner, Cg and CV T in the �ow equation. This was done by using

MATLAB's built-in 
ommand fminsear
h. However, after optimal parameter

estimation, the pressure loss due to the �ow through mouth and the pressure

loss in the VT turned out to be negligible. After omitting these terms we are

left with three parameters but only two terms in the �ow equation. This means

that same pulse is obtained with in�nitely many parameter 
ombinations. A

reasonable 
ombination minimizing the squared error is psub = 550 Pa, Ciner =

2.35 · 10
3 kg/m4 and Cg = 8.24 · 10

−9 Ns. The values 
omputed earlier are

Ciner = 3.30 · 10
3 kg/m4 and Cg = 8.22 · 10

−11 Ns.
The pulses in Fig. 5.1 are very 
lose to ea
h other. This suggests that the

LF-pulse 
an be faithfully 
onstru
ted with a 
rude physi
al model.
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Figure 5.1: The modelled pulse and an LF-pulse obtained by inverse �ltering

[a℄ vowel produ
ed by male speaker using pressed phonation

Chapter 3

The VT model was presented in Chapter 3. First, su
h a variant of the Webster's

equation was presented, that in
ludes a 
ontribution due to the tube 
urvature.

This variant is derived in a manus
ript Lukkari and Malinen (2008b). Then the

state spa
e was dis
retized by a FE method, using the physi
al energy norm of

the state spa
e. Crank-Ni
holson dis
retization was applied in the time variable.

A se
ondary purpose of this work was to 
ompare the spe
tral properties of

the Webster's equation (with and without 
urvature) with the 3-D wave equa-

tion. Hannukainen et al. (2007) 
omputed the formant frequen
ies by using the

3-D wave equation. The data for the Webster's equation, that is, the VT 
ross-

se
tional area fun
tion and the 
urvature of the VT 
enterline, were obtained
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from the same MRI data that was used also by Hannukainen et al. (2007).

It was noti
ed that the formant frequen
ies given by both variants of the

Webster's equation were quite 
lose to the formants given by the wave equation.

The four lowest formants given by the un
urved Webster's equation were on

average 1.2 % lower, and the formants from the 
urved equation were on average

3.2 % lower than the formants given by the wave equation (see Table 3.1). This

di�eren
e 
ould be explained by the 
hoi
e of the VT 
enterline as the 
enter of

mass of ea
h 
ross-se
tion. This way the tube might be
ome e�e
tively longer,

than in the 3-D equation, be
ause in the 3-D geometry a wave propagating

in the VT 
an �take a short
ut� in the 
urves of the tube. In the Webster's

equations 
ase, this is of 
ourse impossible. Furthermore, sin
e the sound speed


orre
tion fa
tor in the Webster's equation with 
urvature is always less than

or equal to one, the 
urvature fa
tor in the equation makes the tube e�e
tively

even longer, whi
h lowers the formant frequen
ies even more. This questions the

usability of the Webster's equation with 
urvature as su
h, at least in a
ousti


appli
ations. When the 
urvature ratio is small, the Webster's equation with


urvature be
omes more a

urate but the e�e
t of the 
urvature is negligible.

When the 
urvature ratio is greater, the 
urved equation fails to des
ribe the


urvature e�e
t 
orre
tly.

One possible way to �x the situation is to s
ale the total length of the tube.

By dimension analysis, the formant frequen
ies would then be s
aled similarly.

So instead of studying the absolute values of the formant frequen
ies, we should


ompare the relative frequen
ies Fn/F1. However, these were very 
lose to ea
h

other for both 
urved and un
urved 
ase so we 
annot make any 
on
lusions

based on these 
omputations. In addition, we 
annot use the higher formant fre-

quen
ies be
ause the formants from the wave equation are distorted (upwards)

by the 
rossmode resonan
es. Also the geometry used for 
onstru
ting the data

is 
ertainly not exa
tly su
h as it is assumed in the derivation of the Webster's

equation. That is, the tube 
ross-se
tions are not 
ir
ular.

Another short
oming of our model is the la
k of dissipative terms in the vo
al

tra
t. The physi
al interpretation of the Neumann boundary 
ondition at the

walls of the VT is that the material of the tube walls is absolutely in�exible. In

reality, the walls of the VT are elasti
 and the vibration of the air is transmitted

to the tissue 
ausing dissipation at walls. Vis
ous losses are not in
luded in

the Webster's equation either. Thus the only dissipation in the model is the

�ow resistan
e at lips: pres = θρcvm. The normalized a
ousti
 resistan
e θ is

here more or less arbitrarily 
hosen, but re�ning the model here by physi
al


onsiderations would be rather useless as long as other dissipation is ex
luded.

Chapter 4

The results of the full model simulations are shown in Chapter 4. The model

output seems all right and the spe
tra of both mouth pressure signal and the

glottal �ow are believable. The results were also well in line with earlier �ndings:

when the sour
e frequen
y F0 is well below the lowest VT formant frequen
y F1,

the VT feedba
k e�e
t is rather weak. Only when the frequen
ies were 
lose to



CHAPTER 5. DISCUSSION 44

ea
h other, the feedba
k 
aused bifur
ations in the sour
e vibration. However,

the only type of bifur
ation revealed by our model was the sour
e frequen
y

lo
k-in to the formant frequen
y F1 when F1 approa
hed F0 or when F1 ≈ 2F0.

Experimental studies by Titze et al. (2008) revealed also subharmoni
 and,

with some test subje
ts, even 
haoti
 regimes at these frequen
y 
rossovers. In

their experiments the frequen
ies F0 and F1 
hanged dynami
ally, so that it is

impossible to say whether these phenomena were steady or only transitional.

Our simulations for studying the feedba
k e�e
t in Se
tion 4.2.2 were separate

for di�erent values of F1 so that no transitional bifur
ations 
an be dete
ted.

In reality, there are of 
ourse other phenomena besides the VT a
ousti
s that


an have an e�e
t on the glottal behaviour.

Hatzikirou et al. (2006) also performed similar simulations as we in Se
tion

4.2.2, but with su
h a feedba
k 
on�guration that the VT feedba
k had a dire
t

e�e
t on the glottal �ow. Their model revealed subharmoni
s in the spe
trum

of the position of one mass in their mass spring model of the glottis.
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Appendix A

The MATLAB-
ode

The stru
ture of the 
ode is su
h that there are two initialization �les, init.m

and VTdata.m. The init.m-s
ript has to be run before every simulation. The �le

VTdata.m only needs to be run on
e unless 
hanges are made. Unfortunately

the original VT data 
an not be provided.

The �le solver.m does the simulation. It 
alls fun
tions �.m, whi
h is the

time derivative of the state ve
tor (from the equations of motion of the glottis),

NewV.m, whi
h 
omputes the glottal �ow and interpol.m whi
h performs the

interpolation as des
ribed in Se
tion 2.4.1.

A.1 File init.m

%In this file the physi
al parameters of the (glottis) model are

%initialized

global d step rho width L mu;

%===SIMULATION PARAMETERS===

NumIts=5000; %Number of iterations

step=0.00002; %Time step length

N=100; %Number of dis
retization points in the VT

fb=1; %Feedba
k on (1) or off (0)


ontinue=0; %Continue previous simulation? 1/0

%===PHYSICAL PARAMETERS===

rho=1.2; %Air density


=343; %Speed of sound

mu=18.7e-6; %Dynami
 vis
osity of air

H0=11.2*10^-3; %Height of the subglottal 
hannel

47
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width=18*10^-3; %Width of the subglottal 
hannel

L=6.8*10^-3; %Length (or thi
kness) of the glottis

Kh=730; %Retrieving stiffness in vo
al 
ord 
onta
t

aa=0.85; %The x-
oordinates of the springs are aa*L and bee*L

bee=0.15;

theta=.06; %Mouth resistan
e 
oeffi
ient in VT boundary 
ondition

% When glottis is narrower than this, it is 
losed and flow is set to

% zero (epsilon in the report)

d=2.5e-5;

%---Parameters for 
ord #1---

%Masses

m11=1.686e-4;

m12=0.595e-4;

m13=2.531e-4;

%Stiffness 
oeffi
ients

k11=124;

k12=69;

%Damping 
oeffi
ients

b11=.065;

b12=.065;

%The equilibrium state when there is no flow

Y_110=5.4*10^-3;

Y_120=0;

%---Parameters for 
ord #2---

%Masses

m21=m11;

m22=m12;

m23=m13;

%Stiffness 
oeffi
ients

k21=k11;

k22=k12;

%Damping 
oeffi
ients

b21=b11;

b22=b12;
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%The equilibrium state when there is no flow

Y_210=5.8*10^-3;

Y_220=H0;

%===INITIAL CONDITIONS===

%---Initial values for the glottis---

if 
ontinue > .5

xend=x(1:8,end); %Storing the final state of previous

end %simulation

x=zeros(9,NumIts+1); %The solution points are stored here

if 
ontinue > .5

%Continuing previous simulation

x(1:8,1)=xend;

else

%Glottis initially 
losed (determined by simulating with 
onstant flow)

x(1,1)=0.00574388213041;

x(2,1)=0.07929750365587;

x(3,1)=-0.00013732214913;

x(4,1)=-0.03349122869515;

x(5,1)=0.00545611786959;

x(6,1)=-0.07929750365587;

x(7,1)=0.01133732214913;

x(8,1)=0.03349122869516;

end

%---Initial value for the glottal flow---

if 
ontinue > .5

Vend=Vout(end);

else

Vend=0;

end

Vout=zeros(NumIts+1,1);

Vout(1)=Vend;

%---The initial state for the VT---

if 
ontinue < .5

xi=zeros(N+1,1);

eta=zeros(N+1,1);

end

%---Forming the mass, stiffness and damping matri
es---

M1=[m11+m13/4,m13/4;m13/4,m12+m13/4℄;
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M2=[m21+m23/4,m23/4;m23/4,m22+m23/4℄;

M1_inv=inv(M1);

M2_inv=inv(M2);

K1=[aa^2*k11+bee^2*k12, aa*(1-aa)*k11+bee*(1-bee)*k12;

aa*(1-aa)*k11+bee*(1-bee)*k12, (1-aa)^2*k11+(1-bee)^2*k12℄;

K2=[aa^2*k21+bee^2*k22, aa*(1-aa)*k21+bee*(1-bee)*k22;

aa*(1-aa)*k21+bee*(1-bee)*k22, (1-aa)^2*k21+(1-bee)^2*k22℄;

B1=diag([b11 b12℄);

B2=diag([b21 b22℄);

kerr=L*width*rho*H0^2; %Auxiliary 
oeffi
ient

open=y210-y110>d; %Test whether the glottis is initially 
losed

A.2 File VTdata.m

%This file pro
esses the VT data and determines the 
enterline of the VT,

%the 
urvature of it and the 
ross-se
tional area fun
tion

global Ao Am vakio1 vakio2

%Importing the data and removing the false sli
es from the mouth. The data

%
onsists of three matri
es 
ontaining the X-, Y- and Z-
oordinates of the

%VT boundary points. One row 
ontains the information of one sli
e.

neutral_tra
t; %This imports the data

X3D(29,:)=X3D(34,:);

Y3D(29,:)=Y3D(34,:);

Z3D(29,:)=Z3D(34,:);

X3D=X3D(1:29,:);

Y3D=Y3D(1:29,:);

Z3D=Z3D(1:29,:);

%Change of units: 
m -> m

X3D=.01*X3D;

Y3D=.01*Y3D;

Z3D=.01*Z3D;

nsl=size(X3D,1); %Number of SLi
es

pps=size(X3D,2); %Points Per Sli
e

%Initially the VT 
enterline is determined as the 
enter of mass of the

%boundary points. The Y-
oordinate (
orresponding to right-left dire
tion)

%is left zero. Other 
oordinates are X (forward-ba
kward) and Z (up-down)


path=zeros(3,nsl);


path(1,:)=mean(X3D');
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path(3,:)=mean(Z3D');

%In matrix VT the first row 
ontains the parameter s (
enterline ar
h length

%parameter), se
ond row 
ontains the hydrauli
 radius, third is the 
ross

%se
tional area and fourth is the sound speed 
orre
tion fa
tor 1/Sigma(s)^2.

VT=zeros(4,nsl);

VT(1,2:end)=
umsum(sum((
path(:,2:end)-
path(:,1:end-1)).^2).^.5);

%Then the sli
es are proje
ted on planes whose normals are tangents of the

%
enterline at ea
h sli
e. In addition, the area and the hydrauli
 radius

%of ea
h sli
e are determined. Also the 
enterline is 
orre
ted to mat
h

%the 
enter of mass of the sli
e.

%First the tangent ve
tors of the 
enterline are determined and stored

normals=[
path(:,2)-
path(:,1),
path(:,3:end)-
path(:,1:end-2),


path(:,end)-
path(:,end-1)℄;

for k=1:nsl

%k:th normal ve
tor is rotated 90 degrees and normalized to unit length

abu=[normals(3,k);0;-normals(1,k)℄;

abu=abu/norm(abu);

%The previous proje
tion is stored here. Initially it is the last point to

%be proje
ted (that is pps:th point)

old_proj=abu'*([X3D(k,pps);Y3D(k,pps);Z3D(k,pps)℄-
path(:,k))*abu+

[0;Y3D(k,pps)-
path(2,k);0℄;

%This ve
tor is the 
orre
tion to the 
enterline at k:th sli
e


orre
tion=zeros(3,1);

for j=1:pps

%proj is the datapoint proje
ted on the plane with respe
t to

%origin at the 
enter of the sli
e

proj=abu'*([X3D(k,j);Y3D(k,j);Z3D(k,j)℄-
path(:,k))*abu+[0;Y3D(k,j)-
path(2,k);0℄;

%
hange of the origin to the original one

X3D(k,j)=
path(1,k)+proj(1);

Z3D(k,j)=
path(3,k)+proj(3);

%This "area" is the area of a triangle formed by the 
enter of the sli
e

%and points "proj" and "old_proj".

%This area 
an be negative if the sli
e is not 
onvex.

area=sign(normals(:,k)'*
ross(proj,old_proj))*abs(a
os(proj'*old_proj/

norm(proj)/norm(old_proj))/8*(norm(proj)+norm(old_proj))^2);

VT(3,k)=VT(3,k)+area;

%The average of "proj" and "old_proj" is weighted with the area of
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%the triangle and it is added to the "
orre
tion"-ve
tor


orre
tion=
orre
tion+area/2*(proj+old_proj);

%First the 
ir
umferen
es are stored here

VT(2,k)=VT(2,k)+norm(old_proj-proj);

old_proj=proj;

end

%The "
orre
tion" is divided with the whole sli
e area be
ause of the

%weighting. The 
enterline is then 
orre
ted.


orre
tion=2/3/VT(3,k)*
orre
tion;


path(1,k)=
path(1,k)+
orre
tion(1);


path(3,k)=
path(3,k)+
orre
tion(3);

end


lear('abu','proj','old_proj')

VT(2,:)=2*VT(3,:)./VT(2,:); %The hydrauli
 radius is r_h=2A/C.

%The fourth row of "VT" 
ontains the 
orre
tion fa
tor for the speed of

%sound. If they are repla
ed with ones, the tube is assumed un
urved.

kaps=zeros(nsl,1);

for k=1:size(VT,2)-2

hyp=norm(
path(:,k+2)-
path(:,k));

l1=
path(:,k+1)-
path(:,k);

l2=
path(:,k+2)-
path(:,k+1);

kappa=2*(1-(l1'*l2)^2/norm(l1)^2/norm(l2)^2)^.5/hyp;

kaps(k+1)=kappa;

end

VT(4,:)=1+VT(4,:)./VT(3,:);

VT(4,:)=1+.25*VT(3,:)/pi.*kaps'.^2;


lear('hyp','l1','l2','normals','kappa','kaps')

%The s-axis is dis
retized for the FEM-solver

Lvt=VT(1,end); %Length of the VT (=ar
h length of the 
enterline)

ds=Lvt/N; %Dis
retization interval

%The data is modified to 
orrespond to this dis
retization, that is the

%data is interpolated in the points of dis
retization. This data is stored

%to the matrix "VT2".

VT2=zeros(4,N+1);

VT2(1,:)=ds*(0:N);

VT2(2:4,1)=VT(2:4,1);

VT2(2:4,end)=VT(2:4,end);

for k=2:N

ind=find(VT(1,:)<=(k-1)*ds,1,'last');

VT2(2:4,k)=((k-1)*ds-VT(1,ind))/(VT(1,ind+1)-VT(1,ind))*VT(2:4,ind+1)+

(VT(1,ind+1)-(k-1)*ds)/(VT(1,ind+1)-VT(1,ind))*VT(2:4,ind);

end


lear('ind');
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Ao=VT2(3,1); %VT area after glottis

Am=VT2(3,end); %Area of mouth

%Computing the 
onstant C_{iner}

integrandi=1./VT2(3,:);

integraali=(.5*integrandi(1)+.5*integrandi(end)+sum(integrandi(2:end-1)))*ds;

vakio1=rho*Ao*integraali;

%Computing the 
onstant C_{VT}

integrandi=1./VT2(2,:).^4;

integraali=(.5*integrandi(1)+.5*integrandi(end)+sum(integrandi(2:end-1)))*ds;

vakio2=integraali;


lear('integrandi','integraali');

%Finally, the mass matrix M, stiffness matrix K and dissipative matrix R

%
orresponding to the boundary 
ondition at mouth

R=sparse(zeros(N+1,N+1));

R(N+1,N+1)=Am/2/(rho*
*theta);

M=sparse(zeros(N+1,N+1));

M(1,1)=1/4*VT2(3,1)*VT2(4,1)+1/12*VT2(3,2)*VT2(4,2);

for k=2:N

M(k,k)=1/12*VT2(3,k-1)*VT2(4,k-1)+1/2*VT2(3,k)*VT2(4,k)+1/12*VT2(3,k+1)*VT2(4,k+1);

M(k,k-1)=1/12*VT2(3,k-1)*VT2(4,k-1)+1/12*VT2(3,k)*VT2(4,k);

end

M(N+1,N+1)=1/12*VT2(3,N)*VT2(4,N)+1/4*VT2(3,N+1)*VT2(4,N+1);

M(N+1,N)=1/12*VT2(3,N)*VT2(4,N)+1/12*VT2(3,N+1)*VT2(4,N+1);

M=M+M'-diag(diag(M));

M=ds/2/rho/
^2*M;

M_inv=M^-1;

K=sparse(zeros(N+1,N+1));

K(1,1)=VT2(3,1)/2+VT2(3,2)/2;

for k=2:N

K(k,k)=VT2(3,k-1)/2+VT2(3,k)+VT2(3,k+1)/2;

K(k,k-1)=-VT2(3,k-1)/2-VT2(3,k)/2;

end

K(N+1,N+1)=VT2(3,N)/2+VT2(3,N+1)/2;

K(N+1,N)=-VT2(3,N)/2-VT2(3,N+1)/2;

K=K+K'-diag(diag(K));

K=1/2/ds*K;

%The matrix in the update equations are pre
omputed and -inverted here for

%the time step "step" in order to make 
omputation faster.
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xi
i=full((step/2*K+2/step*rho*M+rho*R)^-1);

xi
=(-step/2*K+2/step*rho*M+rho*R);

A.3 File solver.m

%This file solves the equations of motion of the glottis, the

%glottal flow ODE and the Webster's equation one step at a time.

op=zeros(NumIts+1,1); %1/0 glottis open or 
losed

op(1)=open;

dt=step;

Pm=zeros(NumIts+1,1); %Ve
tor for pressure at mouth

Vm=Pm; %Ve
tor for flow velo
ity at mouth

P
=Pm; %Counter pressure (feedba
k)

bhat=zeros(N+1,1); %FEM-solver load ve
tor

for n=1:NumIts

%EQUATIONS OF MOTION

Vf=Vout(n)*Ao/H0/width; %Subglottal flow velo
ity

X=x(1:8,n); %Current state

%RK4 steps

s1=ff(X,fb*.0817*P
(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,

Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s2=ff(X+step/2*s1,fb*.0817*P
(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,

Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s3=ff(X+step/2*s2,fb*.0817*P
(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,

Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s4=ff(X+step*s3,fb*.0817*P
(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,

Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

Xnew=X+step/6*(s1+2*s2+2*s3+s4);

dt=step;

%Testing whether the glottis 
loses/opens at 
urrent step. If so,

%then interpolate as des
ribed in the report

if abs((Xnew(5)-Xnew(1)>d)-open)>.5

open=1-open;

[Xnew,dt℄=interpol(x(:,n-1),[X;x(9,n)℄,[Xnew;x(9,n)+step℄);

end

op(n+1)=Xnew(5)-Xnew(1)>0;

x(1:8,n+1)=Xnew;

x(9,n+1)=x(9,n)+dt;
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%GLOTTAL FLOW

if op(n+1) > .5

Vout(n+1)=NewV(Xnew(5)-Xnew(1),Xnew(7)-Xnew(3),Vout(n),dt);

end

Vout(n+1)=(Vout(n+1)>0)*Vout(n+1); %No negative flow

%WEBSTER'S EQUATION

%Load ve
tor for the FEM-solver

bhat(1)=dt*.25*Ao*(Vout(n)+Vout(n+1));

%Crank-ni
holson time dis
retization. The matri
es in the update

%equations are pre
omputed in VTdata.m for steps with time step "step".

if dt<step

xi_old=xi;

xi=(dt/2*K+2/dt*rho*M+rho*R)\((-dt/2*K+2/dt*rho*M+rho*R)*xi_old+2*M*eta+bhat);

eta=2/dt*rho*(xi-xi_old)-eta;

else

xi_old=xi;

xi=xi
i*(xi
*xi_old+2*M*eta+bhat);

eta=2/step*rho*(xi-xi_old)-eta;

end

Pm(n+1)=eta(N); %Pressure at mouth

Vm(n+1)=-(xi(N)-xi(N-1))/ds; %Flow velo
ity at mouth

P
(n+1)=eta(1); %Counter pressure

end

[OQ,flux℄=suhde(op,Vout,x(9,:)); %Cal
ulating the open quotient and

OQ %glottal net flux and printing them

flux

A.4 File �.m

fun
tion f=ff(x,P
,Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,Y_110,Y_120,

Y_210,Y_220,width,kerr,L,Kh,d)

%This is the fun
tion f of the equation x'(t)=f(x(t)), whi
h are the

%equations of motion of the glottis

gap1=x(5)-x(1);

gap2=x(7)-x(3);



APPENDIX A. THE MATLAB-CODE 56

if open > .5

if gap1<0

error('neglog')

end

%Load for
e for open glottis

Fsum=-kerr*Vf^2/2/gap1/gap2;

F1=kerr*Vf^2/2*(-1/gap1/(gap2-gap1)+1/(gap1-gap2)^2*log(gap2/gap1));

F2=Fsum-F1;

F=[F1-Y_110^2/2/L*width*P
;F2+Y_110^2/2/L*width*P
℄;

else

%Load for
e for 
losed glottis

F=[(gap1<0)*Kh*(-gap1)^1.5-Y_110^2/2/L*width*P
;Y_110^2/2/L*width*P
℄;

end

dW1=M1_inv*(-B1*[x(2);x(4)℄-K1*[x(1)-Y_110;x(3)-Y_120℄-F);

dW2=M2_inv*(-B2*[x(6);x(8)℄-K2*[x(5)-Y_210;x(7)-Y_220℄+F);

f=[x(2);dW1(1);x(4);dW1(2);x(6);dW2(1);x(8);dW2(2)℄;

A.5 File NewV.m

fun
tion new_v=NewV(gap1,gap2,v,dt)

%This fun
tion 
al
ulates the glottal flow by using a semi-impli
it

%Euler-method

global vakio1 vakio2 rho Ao Am width L mu

%Driving pressure (p_{sub} in the flow-ODE)

Plung=800;

%No flow if the glottis is 
losed

if gap1<=0

new_v=0;

return

end

CC=12*mu*Ao*0.8e-3/width/gap1^3+8*mu*Ao/pi*vakio2;

%Semi-impli
it Euler method

new_v=1/(1+CC*dt/vakio1)*(v+dt/vakio1*(Plung-.5*rho*(Ao/Am)^2*v^2));
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A.6 File interpol.m

fun
tion [new,dt℄=interpol(Xold,X,Xnew)

global d step;

gap0=Xold(5)-Xold(1);

gap1=X(5)-X(1);

gap2=Xnew(5)-Xnew(1);

%Interpolate the point of 
losure (stored in "root")

p=polyfit([Xold(9),X(9),Xnew(9)℄,[gap0-d,gap1-d,gap2-d℄,2);

r=roots(p);

root=r(1);

if and(r(2)>X(9),r(2)<Xnew(9))

root=r(2);

end

%"new" is the interpolated solution

new=zeros(8,1);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(1),X(1),Xnew(1)℄,2);

new(1)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(2),X(2),Xnew(2)℄,2);

new(2)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(3),X(3),Xnew(3)℄,2);

new(3)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(4),X(4),Xnew(4)℄,2);

new(4)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(5),X(5),Xnew(5)℄,2);

new(5)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(6),X(6),Xnew(6)℄,2);

new(6)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(7),X(7),Xnew(7)℄,2);

new(7)=polyval(p,root);

p=polyfit([Xold(9),X(9),Xnew(9)℄,[Xold(8),X(8),Xnew(8)℄,2);

new(8)=polyval(p,root);

dt=root-X(9);


