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Chapter 1

Introduction

1.1 Human voice production

Figure 1.1 shows a schematic diagram of the human vocal mechanism. In a
simplified model of human voice production, lungs can be considered as a large
air reservoir in constant pressure. This pressure is caused by the breathing
muscles contracting the lungs. The air escapes from the lungs through a channel
consisting of two parts, the trachea and the vocal tract (VT). These parts are
separated by a slit-like narrowing, formed by vocal cords. The orifice between
the cords is called the glottis. At the other end, the vocal tract is terminated by
the lips. The voice also has a secondary transmission channel, namely the nasal
tract diverging from the VT at velum and ending at the nostrils. The velum
opening regulates the influence of the nasal coupling.

In the basic configuration the voice is generated by the flow induced vibra-
tions of the vocal cords which act like a valve, periodically opening and closing
the glottis, and thereby generate short flow pulses. This oscillation occurs be-
cause the cords have no (stable) equilibrium states for a flow exceeding a certain
value, known as the phonation threshold. When the glottis is closed, there is
a transglottal pressure difference, that will eventually force the glottis open.
After the glottis opens, the flow accelerates and — due to Bernoulli effect —
the local pressure at the glottis drops. The pressure drop sucks the vocal cords
together again. The glottal flow pulses excite the acoustics of the air column in
the vocal tract. The acoustic voice signal is filtered by the vocal tract and the
sound signal is eventually transmitted to the exterior space through the mouth
and/or the nostrils.

1.2 Speech sounds

The geometry of the VT varies during phonation due to the movement of the
articulators, of which the most important ones are the lips, jaw, tongue and
velum. Let us briefly introduce the production mechanisms of typical speech
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Figure 1.1: Schematic diagrams of the human voice mechanism and functional
components of the vocal tract by Flanagan (1972)

sounds in the General American (GA) dialect (see Flanagan (1972)).

In vowel production, the VT is more or less open at every point, and the
sound is transmitted principally through mouth and, to a lesser degree, through
nostrils. The vowels can be classified by two properties of the configuration, the
position of the tongue hump (front, central and back) and degree of constriction
of the VT at mouth. Altering the VT geometry has an effect on the acoustic
eigenfrequencies of the air column in the VT. In phonetics these frequencies are
known as the formant frequencies.

In the English language the production of some consonants resembles vowel
production. For example the production of the glides [w, j] pronounced as
in words "we” and “you” respectively, is very close to the production of [u]
and [i] (pronounced as in words "boot” and "eve”). Also the production of the
semivowels [r, 1] pronounced as in "read” and "let” resembles that of vowels. The
only difference is that the tongue is up creating a constriction at the mouth.

Also the nasals [m, n, 1] resemble vowels to some extent. They are produced
by closing the vocal tract — either by lips in [m], the tip of the tongue against
the hard palate in [n] or the back of the tongue against the soft palate [g] —
and holding the nasal tract widely open. The sound is then transmitted only
through nostrils.
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One class of the physically more complicated consonants are the fricatives
[v, f, 8, ©, 2z, s, 3, [, h] pronounced as in words "vote”, "for”, "then”, "thin”,
"z00”, "see”, "azure”, "she” and "he” respectively. The fricatives are produced
by constricting the VT at certain point so that turbulent flow is formed at the
constriction. For example [v] and [f] are produced by constricting the mouth
opening by the teeth and the lower lip. The difference between these two is that
voicing (that is, vocal cord oscillation with closure) occurs during the production
of [v] which is not the case during the production of [f]. This way fricatives can
be further classified into voiced [v, 9, z, 3] and their voiceless pairs [f, ©, s, [].
The so called glottal fricative [h] has no voiced counterpart.

Another class are the stop consonants [p, t, k, b, d, g], pronounced as in
words "pay”, "to”, "key”, "be”, "day” and "go” respectively. They are produced by
initially closing the VT at certain point and letting the lungs build up a pressure
behind the closure. This pressure is then abruptly released by opening the
closure. For example, when pronouncing [d] or [t], the VT is initially closed by
pressing the tongue against the palate. Like fricatives, also the stop consonants
can be subcategorized into voiced [b, d, g| and voiceless [p, t, k], depending on
whether voicing occurs during the pressure buildup.

Of speech sounds not included in GA speech, let us present few examples
whose production differs from any GA sound. One example is the Finnish [r],
which is produced by letting the tip of the tongue vibrate against the hard
palate. Another one is the French (or guttural) [r] which is produced by letting
the velum vibrate against the back of the tongue.

1.3 Modelling human phonation

The demand for phonation models has increased constantly during the last
fifty years. Applications of such models can be found in telephony and speech
synthesizing technologies as well as some medical sciences such as surgery (see,
i.e., Svacek and Horacek (2006)). Perhaps the best known class of models
consist of a low-order mass-spring model of glottis, coupled to some kind of
static acoustic load representing the vocal tract (see, e.g., Ishizaka and Flanagan
(1972)). The model constructed in this thesis also falls under this category.
These models are suitable for modelling the production of vowel (and vowel-
like) speech sounds. Physically more complicated speech sounds, such as stop
consonants and fricatives are outside these models’ range.

One approach for studying human phonation are inverse filtering techniques
(see, i.e., Alku (1992) and Alku et al. (2006)) which constitute a demand for
a prior model of the glottis signal. Such signal models are presented in e.g.
Fant (1979) and Fant et al. (1986).

One of the earliest widely known physical glottis models is presented by
Ishizaka and Flanagan (1972). Their glottis model is symmetric and it consists
of two masses per cord. The aerodynamic force acting on glottis takes into
account the Bernoulli effect and a viscous pressure drop according to the Hagen-
Poiseuille equation. Their VT-model consists of four cylindrical tube-elements.
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Figure 1.3: The block diagram of the model presented in this paper

The VT pressure at the glottis end is taken into account when evaluating the
glottal flow. This kind of feedback configuration is illustrated in Fig. 1.2.

A more recent model of phonation is presented by Titze (2008). There the
effect of the VT feedback to both glottal flow and vocal fold mechanics is studied
first separately and then with a computational model.

1.4 Outline of this work

Fig. 1.3 shows the block diagram of the model constructed in the present work.
Our design philosophy is to keep the model simple enough to be mathematically
tractable. We want all the blocks to be physically realistic on a subsystem level.
However, considering the whole system, there are some model simplifications on
the subsystem level that would exclude each other.

First, in Chapter 2, a mass-spring model of the glottis is developed. The
geometry of the model as well as the equivalent aerodynamic forces are highly
simplified. The model has two degrees of freedom per cord and no symmetry
assumption is made. This means that both vocal cords are allowed to vibrate
independently. Thus, modelling of the effect of nonsymmetric parameters is
possible. For the closed glottis, a nonlinear spring force is applied. This force
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is a simple version of the Hertz model of impact force as in another glottis
model by Horacek et al. (2005). This paper and its predecessor (Horafek and
Svec (2002)) have proven valuable references concerning also many other glottis
model details.

This work also presents a model of the glottal flow. This model takes into
account viscous pressure losses in the glottis and the vocal tract. It also takes
into account the inertance of the VT. However, in the derivation of the flow
equation, it is assumed that the air is incompressible. That is, the mass and
volume flow through every cross-section in the VT is constant at a given moment.

At the end of Chapter 2, the behaviour of the glottis model is investigated by
numerical simulation with different parameter configurations including a sim-
ulation with asymmetric glottis parameters. In these simulations there is no
feedback from the VT directly to the mass-spring model. However, the flow
model implicitly contains an inertive counter pressure from the vocal tract,
which is always present.

In Chapter 3 the vocal tract model is presented. The model is a Webster’s
horn equation model which approximates the solution of the 3-D wave equation
averaged over the VT cross-sections (for an early treatment of the Webster’s
equation, see Chiba and Kajiyama (1941)). Here we use a more general vari-
ant of the Webster’s equation, derived by Lukkari and Malinen (2008b). The
curvature of the tube is taken into account as a correction factor for the speed
of sound. However, energy dissipation at the tube walls is not taken into ac-
count here. A solver based on the Finite Element Method is written for the VT
model. At the end of Chapter 3, the lowest formant frequencies and correspond-
ing pressure/velocity potential distributions are computed from an eigenvalue
equation. The formants are compared to those given by a 3-D wave equation
model by Hannukainen et al. (2007). These two models are constructed by using
exactly the same magnetic resonance imaging (MRI) data for the VT, making
this comparison reasonable.

In Chapter 4, the glottis and VT models are coupled together. For com-
parison, a simulation without the VT feedback is run. Then the effect of the
feedback is investigated first for the actual VT geometry and then by using a
straight tube as the resonator. The length of the tube is varied for tuning the
formant frequencies.

It is particularly interesting to see what happens when the lowest formant
frequency crosses the glottal fundamental frequency or its lowest multiples. This
has been studied also by Titze (2008) and Hatzikirou et al. (2006) with a model
similar to the one in Ishizaka and Flanagan (1972).



Chapter 2

The glottis model

In this chapter, we shall introduce the two blocks on the left in the block diagram
(Fig. 1.3). First, we shall construct the mass-spring model of glottis in Section
2.1. Then, a 1-D model of the (incompressible) glottal flow with viscous pressure
loss is constructed in Section 2.2. The coupling from the flow to the glottis model
through the load force F is developed in Section 2.3.

The geometry of the vocal folds is as simple as possible. There is little
point in refining the model geometry, when many of the material parameters
are more or less neglected, and the aerodynamics in the flow model are based
on somewhat harsh laminarity and incompressibility assumptions. The same
applies also for the omission of trigonometric functions in the formulas of the
load force F.

Simulations will be performed for the glottis model before it is connected to
the vocal tract.

2.1 The mechanics of the glottis model

We consider a physical system shown in Fig. 2.1. The system consists of two
wedge-shaped vibrating bodies having two degrees of freedom each. The system
is practically two-dimensional, meaning that all cross-sections in the glottis are
rectangular. The width of the vocal cords and the channel between them (to
the direction perpendicular to the paper) is denoted by h.

This system can be replaced by an equivalent system that consists of alto-
gether six masses, three each side. These three masses are attached to a rod
of length L, so that there is one mass in both ends and one at the midpoint.
This rod is connected to the wall of the channel with two sets of springs and
dampers. The dampers are located at the endpoints of the rod whereas the
springs are located at points whose distance from the midpoint is [. The reason
for the placement of the springs is that the tuning properties are better than
if the springs would be at the endpoints of the rod as well. This will be dis-
cussed in Section 2.4.2 in more detail. In addition, in the equivalent system
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there are load forces F} and F; that depend only on the glottal openings at the
narrow end of the glottis (point x = L) and in the wide end (z = 0), namely
AWy := g — wy1 + we; and AWy := Hy — wio + wey. Here g is the glottal
gap, when the displacements are zero. This gap is a control parameter in the
model. When the glottis is open, F} and F5 correspond to the force and moment
caused by the dynamic pressure p(x,t). When the glottis is closed, there is no
air flow. Instead of the air pressure there is a contact force between the vocal
cords pushing the cords apart.
The equations of motion for the cords are

{M1W1(t + B1W1(t) + K Wi (t) = —F

)
MoTio(t) + BoWa(t) + KoWa(t) = F,  teR (2.1)

where W; = (w;1  w;2)T are the displacements of the endpoints of the j' cord
(j=1,2)and F = (F} F>)7T is the external load force. M; is the mass matrix,
Bj is the damping matrix and K is the stiffness matrix.

The equilibrium position of the masses is taken to be w;; = 0, 4,5 = 1,2
which occurs when there is no flow, and constant pressure pg,; at all sides of the
vocal cords. Then F' = 0 and since the system is at rest, that is W; = W; =0,
by Eq. (2.1) we have W; = 0.

Next we shall calculate the entries of the mass and stiffness matrices by
means of Lagrangian mechanics. First, we need to express the kinetic energy 7}
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and potential energy V; as functions of variables w;; and their time derivatives
w;;. For the j'™ cord we get

1. 1 1 Wit + 1o\
and ) )
Vi = 5k (awj + bwjs)” + k2 (bwji + aw;s)”, (2.3)
where a = # and b = #

The Lagrangian function is defined as & = T; — V; and it satisfies the
Lagrange equations

;(afj)—a’% =0, i,j=12 (2.4)

6’11)]1 8wji

By substituting (2.2) and (2.3) into (2.4) we get the unloaded and undamped
equations of motion

mj1j1 + ij% + (a2kj1 + b%kj2) win + ab(kjy + kj2)wjz =0,
Mot jo + mys T2 + (D1 + akj2) wys + ab(kjy + kj2)wjn = 0.

Thus, the mass and stiffness matrices are

[ 4 s mjs
M, = | Mt 1
J - m;3 m;3 )
i mj2 + =

(2.5)

K; =

[ k1 + 2kjo  ab(ksy + kjo)
| ab(kjy+ ki) B+ akyy |

Since the dampers are located at the endpoints of the cords, the damping
matrices are diagonal
bjs O
Bi=| " .
J [ 0 by }

Numerical values of the physical constants are determined in Section 2.4.2.
The damping coefficients b;; remain tuning parameters.

2.2 Glottal flow

We denote the subglottal pressure with pg,; and take the pressure in the exterior
space to be zero. We assume, that the pressure changes along the glottis and
vocal tract for three reasons. Firstly, there is a Bernoulli flow through the mouth
with velocity v,,. Secondly, there is a viscous pressure loss in the glottis and
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the VT. Thirdly, the air in the VT is in accelerating (decelerating) motion when
the glottis is opening (closing) causing an inertive pressure. Mathematically

1
Psub = 5/)7)7271 + ploss(AWh Uo) + Pa, (26)

where p, is the pressure accelerating/decelerating the air in the VT, and pjoss
is the pressure loss in the glottis and the VT. The supraglottal flow velocity is
denoted by v,, which is the quantity we are interested in. This pressure loss
depends on the flow velocity and the state of the glottis through opening AW].
It is here assumed that the air is incompressible in the VT too.

Recall that the pressure loss in a tube with circular cross-section is given by
the Hagen-Poiseuille equation

dp _ _8pQ

de  Ar2
where p is the dynamic viscosity of the gas (unit Pa-s), @ is the gas flux
(m3/s), A is the tube cross-sectional area, and r is the radius of the channel.
The derivation of the Hagen-Poiseuille equation can be found in Fetter and
Walecka (1980), pages 445-448. The Hagen-Poiseuille equation is derived for a
laminar flow in a channel with circular cross-section (in which case A = 771?)
but it can be used also for other profile shapes. In that case the radius r must
be replaced with the hydraulic radius, defined as

2A
C b
where A is the area and C is the circumference of the cross-section of the channel.
For a tube with circular cross-section the hydraulic radius coincides with the
radius of the cross-section.

The pressure loss in the VT is computed by integrating (2.7) over the VT.
The VT geometry is presented in Section 3.2.5. Here we need the hydraulic
radius r, which is shown in Fig. 3.4, and the area function shown in Fig. 3.2.
Thus the pressure loss in the VT is

(2.7)

Th = (28)

8uA, / Lvr ds o

0ss =Vo——— —_— =7, .

Pioss,vT A A(s)rn(5)2 VT
Between two parallel planes within distance H from each other, the Hagen-

Poiseuille law is p 19,0
p H

-_— = . 2.9
dx hH?3 (29)

One way to compute the pressure loss in the glottis would be to set H to be
the height of the channel in the glottis, that is H = H(z,t) and integrate this
expression over the glottis. However, this pressure loss was experimentally found
to be rather mild. Therefore, motivated by Eq. (2.9), the pressure loss in the
glottis was taken to be of the form

C

ploss,g - rwg/lgvoa (210)
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where the loss coefficient C; = 12“‘?%“. This corresponds to a pressure loss in

a rectangular tube with height AW;, width h and length Lo, where AW; << h.
Here Ly remains a tuning parameter to be determined experimentally.
Now the whole pressure loss can be written as

Cy
ploss(AWh’Uo) = (AW?’ +CVT> (211)

Next we shall deal with the acceleration of the air in the VT. The power
accelerating/decelerating the air in the VT is p,Q = paA,v,. This power is
equal to the change rate of the total kinetic energy of the air column, that is

d 1

pa(t)AoUo(t) = % o ip’U(I‘,t)2dI‘
= / pu(r, t)o(r,t)dr
dr
= o(t)0,(t / A Al =ds

LVT S
= wl0inod [ j()

where A(r) = A(s) is the area of the cross-section that contains r and whose
distance from the glottis is s (measured along the VT centerline). Here we
used v(r,t) = ﬁvo(t) (and the same for ©,) which follows from the incom-

pressibility. By denoting the tube inertance by Ciper = p [, Lvr dss) we get

Pa(t) = CinerAo - 05(t). Now Eq. (2.6) yields

. 1 1 (AN c,
Vo(t) = Ci AL (psub 3P (Am> vo(t)* — <AVVl3 + CVT> vo(t)> (2.12)

where the flow velocity at the mouth v,, is replaced with A 2p,, and A,, =
A(Lyr) is the area of the mouth opening. The constants Cmer and Cyr are
determined by numerical integration from data presented in Figs. 3.4 and 3.2.
The subglottal pressure ps,p remains a control parameter which is directly re-
lated to the average glottal volume flow.

2.3 The load force F

2.3.1 Aerodynamic force for the open glottis

We shall assume that the flow is one dimensional. That is, both the flow velocity
V = V(a,t) and the pressure p = p(x,t), where x denotes the distance from the
wide end of the glottis.
We shall use the static version of the law of conservation of mass for incom-
pressible flow
H(z,t)V(x,t) = Hivo, (2.13)
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where H; is the supraglottal channel height, which is set so that the channel area
coincides A(0) in the VT model developed in Chapter 3, that is H; = A(0)/h,
where h is the channel width. In the glottis, the height of the channel is

H(z,t) = AWa(t) + %(AWl(t) — AWL(t), =z €[0,L]. (2.14)

The pressure and velocity distributions are connected through the continuity
equation

Ip(z,t)
ox

However, the time derivative part is neglected here, and so we get the familiar
Bernoulli law

oV (z,t) n oV (z,t)
Oox ot

+ pV(z,t) =0, z €10, L].

1

where pg, is the subglottal pressure.
Now we solve V(z,t) from (2.13), and p(z, t) from (2.15) and finally by using
(2.14) we get
HE
(AWQ + %(AWl — AWQ))Q

1
p(x,t) — Psup = ffpvi (2.16)

2

Thus we have connected the velocity distribution to the relative positions
of the cords and the pressure distribution to the velocity distribution. The
aerodynamic load force for the open glottis

Fa=( F20)  Aw >0
Fyo

can now be determined by two integrals:

L
Fp1+Fao= h/ (p(x,t) — psup) d (2.17)
0

and .
Hy Hy— H
L Fag=h [ alp(o.t) = pus)do - pe- b 200
0

where p. is the supraglottal perturbation pressure from the vocal tract. The area
of influence of pressure p. is hH; /2 (assuming the glottal gap to be negligible)
and the moment arm of the corresponding force is (Hy — H;p)/2. Here psysp
is subtracted from the pressure p(z,t) because of our assumption that w;; =
0 V1,57 = 1,2 is the equilibrium position under subglottal pressure pg,;, and
therefore forces F; and F5 must vanish when p(z,t) = psyup» and p. = 0.
Finally, using (2.16), the evaluation of integrals (2.17) and (2.18) yields

(2.18)

pv2hL H?
2 AW AW,

Fai+Fap=— (2.19)
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and
pvghL H12 Hl2 AW,
Fap = - + In B
’ 2 AW (AW, — AW:) (AW, — AW,)2 T\ AW,
Hi(Ho — Hy)
T h e (2.20)
Then by subtracting (2.20) from (2.19) we get
pvihL H? HE AW,
FA 9 = — In +
’ 2 AWQ(AWQ — AWl) (AWI - AW2)2 AWI
Hy(Ho — Hy)
HilHo = M), 2.21
+ 4L h - pe ( )

Note that if the supraglottal perturbation p. = 0, we get (2.20) from (2.21) by
interchanging AW; «—— AW5. This symmetry could be expected because the
flow direction has no effect on the aerodynamic forces in our simple flow model.

2.3.2 Contact force for the closed glottis

When the glottis is closed, the aerodynamic force is zero. Instead, there is an
impact force due to collision of the vocal cords. Horacek et al. (2005) model this
force by using a slightly simplified version of the Hertz model of impact forces
(see Landau and Lifshitz (1970), pages 30-35). This impact force is of the form

fu = kg|AWL[*2, when AW, < 0.

In the Hertz model, the coefficient ky depends on the material of the colliding
objects and also on their shape, more precisely the radius of curvature at the
contact point. Therefore, the coefficient cannot be defined by the Hertz model in
our geometry. Despite this, using a nonlinear spring as impact force is physically
justifiable, and we shall apply one.

Of course, the effect of the counter pressure p. does not vanish when the
glottis is closed. Together with the impact force the load force for the closed
glottis becomes (see Eq. (2.18) and the discussion following it)

kH|AVV1|3/2 - HO;LHI %h *Pe

Ho—H, Hy g, .
5t -5 Pe

Fy = when AW, < 0.

2.4 Numerical solution

2.4.1 Method

We have written MATLAB code for the numerical solution of the equations
of motion (2.1) and the flow equation (2.12). This code can be found in
Appendix A. The code uses the classical fourth order Runge-Kutta (RK) method
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for the equations of motion and implicit Euler method for the flow equation.
The load function F' in the equations is discontinuous, and this causes prob-
lems. In addition, the aerodynamic forces (2.20)-(2.21) are singular at the point
of discontinuity. We can get rid of the singularity by replacing the point of dis-
continuity slightly above zero. This means stopping the flow when the glottal
gap is under a certain threshold e. Of course the viscosity in the glottis stops
the flow anyway, and € is chosen to be so small that the flow already is rather
low. The meaning of this trick is merely that now we can use constant time
step length for almost every step. Because of this we spare one matrix inversion
on every step in the FEM solver for the VT model. This makes the numerical
solution faster. The numerical solution is not sensitive to the choice of e.
Thus the load function for the equations of motion is piecewise defined

Fu(AW;(t), AWa(t)), when AW;(t) > €
F(AW;(t), AW,(t)) =} 0, when AW (t) € [0, ¢]
Fu (AWL(1)), when AW (¢) < 0.

Note that F' has only one discontinuity at AW, (t) = e.

So we got rid of the singularity but the discontinuity still causes a problem
in numerical solution. This is dealt with the following procedure. If at certain
moment the glottis is open, meaning AW, > €, we use only values of F4 in
the next RK-step, even on the "wrong” side of the discontinuity if needed. Here
we must be careful with the choice of the timestep length. It has to be chosen
small enough, so that the change of AW in one step does not exceed e.

If the glottis closes at the next timestep, meaning AW; ;41 < €, we'll inter-
polate the point where the threshold ¢ is crossed. For this we use the second
degree interpolating polynomial for which values AW; 1, AW ; and AW ;41
are needed.

We shall demonstrate this interpolation with an example. We assume that
the threshold € = 0.2 and that by using F4 as load function we have solution
points AW; 3 = 04, AW; 4 = 0.3 and AW; 5 = 0.16667 (see Fig. 2.2). The
threshold was crossed at the step 4 — 5. Now we shall interpolate by fitting
a second degree polynomial to the solution points and solving the point where
the threshold is crossed. In this example the point is ¢ = 4,772h where h is
the length of the timestep. After this we fit interpolating polynomials for every
variable and evaluate their values at t = 4,772h and set these values for the
new solution point. On the next step Fjy is used as the load function because
now the glottis is closed.

In this interpolation, the order of the error is O(h?) since we use the second
degree interpolation polynomials. In one RK-step the order of the error is O(h*).
However, the number of the steps where this interpolation is performed, does
not depend on h, but only on the length of the simulation time interval. This
means that the overall order of the error is O(h?).
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Figure 2.2: Interpolation example

2.4.2 Physical constants

The geometry of our model is as simple as possible. Therefore we shall de-
termine the cords’ total mass, static moment, and the moment of inertia by
using a somewhat more realistic geometry than the one used for determining
the aerodynamic forces. This geometry is the one used by Horacek and Svec
(2002). They approximated the shape of the vocal fold by a parabolic function

a(r) = —159.861(x — 5.812-1072)2 +5.4-10% [m] 2 € [0, L].

The total mass, static moment and moment of inertia with respect to point
x = 0 can now be evaluated by integrals

L
m = hph/ a(x) dx,
0
L
T= hph/ za(x) dz,
0

L
I= hph/ z?a(z) dz,
0

where h is the width of the channel and pj is the density of the vocal cords.
Now the entries of the mass matrix (2.5) can be determined through conditions

mji1 +mji2 +myz = m,

%mjg —+ Lmjl = T, (222)
2 .
(%) mjg + LQmjl = I, J = 1, 2.
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As in Hora¢ek and Svec (2002) the parameters in preceding equations were
taken as follows: L = 6.8 mm, h = 18 mm and p;, = 1020 kg/m>. With these
parameters, by solving Eqs. (2.22) we get m;; = 1.686 - 10~* kg, mj> = 0.595 -
107* kg and m;3 = 2.531 - 10~ kg.

The height of the channel, which is also the glottal gap at x = 0 when the
displacements W7 = Wy = 0, was taken as Hy = 11.2 mm. The glottal gap at
the narrowest point © = L was g = 0.4 mm, when the displacements were zero.
The air density was p = 1.2 kg/m? and the dynamic viscosity y = 18.7-10~¢ Pas.
The stiffness coefficient for the contact force was kg = 730 N/m3/2. The
subglottal pressure was ps,» = 800 Pa above the ambient pressure. The length
Lo in the expression of the glottal pressure loss coefficient was 0.8 mm (see
explanation related to Eq. (2.10)).

The Laplace-transformation of the undamped (B = 0) system yields

SEMW (s) + KW (s) = F(s),
where M and K are as in (2.5). The transfer function from F to W is
G(s) = (s*M + K)~ L.

The natural (angular) frequencies of the system are the imaginary parts of the
poles of the transfer function. Thus, they are obtained as the roots of the
polynomial

r(s) = det(s*M + K).

However, we want to solve an inverse problem. We want to fit the stiffness
coefficients k1 and ks so that they correspond to desired natural frequencies f;
and f5. Thus we want to solve equations

om0 229

with respect to stiffness coefficients k1 and k. Here the problem was that a
real solution did not always exist if the natural frequencies were close to each
other. This problem is solved by adjusting the parameter [, which is the distance
between the midpoint z = L/2 and the springs. When [ = 0.35L the stiffness
coefficients were real in all simulated cases.

Bounds for the damping parameters b;; were experimentally found so that
the damped system was stable but not overdamped, meaning that the oscillation
did not stop once it had started. We used values bj; = 0.1 Nm/s for i,j = 1,2,
when there was no feedback from the vocal tract.
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2.4.3 Results

First we set f1 = 100 Hz and f» = 105 Hz. Solving equations (2.23) with these
frequencies gives k11 = ko1 = 124 N/m and ki3 = kos = 69 N/m. Fig. 2.3
shows the eigenmodes of the cords vibrating in vacuo and their corresponding
eigenfrequencies with these parameters.

11 =99.7739 Hz 'f2 = 105.096 Hz

e
P

—————

Figure 2.3: Eigenmodes and corresponding eigenfrequencies for the cords vi-
brating in vacuo

The timestep in all simulations was 0.02 ms. First time domain simulation
was performed with all-symmetric parameters and initial conditions. The results
of this simulation are shown in Fig. 2.4. The upper picture shows the positions
of the cords in the narrow end of the glottis (x = L). The picture in the middle
shows the oscillation of the lower cord at the wide end of the glottis (x = 0).
The lowest picture shows the glottal area,

A hAW;(t), when AWq(t) > 0,
971 0, when AW, (t) < 0.

The behaviour of the model is regular. The frequency of the oscillations is
Fy = 118 Hz and the open quotient (OQ) is 0.63, meaning that the glottis is

open 63 % of the time. The average glottal volume flow is % fOT Aoyt (t)dt =
0.301/s, where T is one period duration. Fig. 2.5 shows the glottal area function
and the flow through the glottis during one open phase.

We also carried out a simulation with non-symmetric masses. We set the
mass mo; 20 % greater than my;. Other parameters were as in the first simula-
tion. The positions of the cords in the narrow end of the glottis are shown in the
upper picture in Fig. 2.6. The asymmetry causes a phase difference between
the cords’ oscillation, and reduces the oscillation frequency to 114 Hz. The
0Q is again 0.63 and the average glottal volume flow is 0.31 [/s. The phase
difference is illustrated in the lower pictures which show the phase diagrams
(w11(t), w12(t)) and (wi2(t), waa(t)). However, besides the frequency, the only
thing that can be "heard” from the glottal behaviour is the glottal area function,
and it is not remarkably influenced by the asymmetry.
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Positions of the cords at x=L
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Figure 2.4: Results of the symmetric simulation; f; = 100 Hz, fo = 105 Hz
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Figure 2.5: The output velocity and the glottal area function during one pulse.
The simulation parameters are as in the first simulation (Fig. 2.4).
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Positions of the cords at x=L
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Figure 2.6: Results of the asymmetric simulation. The mass mo; is 20 % greater
than my1. The cord nr. 2 corresponds to the thicker line in the upper picture.

2.4.4 Parameter identification of the F-model

Fant (1979) used a three-parameter model (often referred to as the F-model) to
describe the glottal flow pulse. This model was later improved by Fant et al.

(1986) (known as the LF-model). They removed the abrupt flow termination in
the F-model and added an exponential decay to the end of the flow derivative.
The parameters for these pulses are determined by inverse filtering of measure-
ments of the volume velocity at the lips (see, i.e., Alku et al. (2006) and the
references therein).

In our model the end of the pulse is smooth (that is, continuously differen-
tiable). Despite this, the pulse has more resemblance to the F-model. Therefore
we shall compare our velocity pulse to the three-parameter F-model pulse fitted
into our pulse. These pulses are presented in Fig. 2.7.

The glottal volume velocity pulse in Fant (1979) consists of two pieces, a
rising and a falling branch:

Ut = %Uo(l — cos(wt)), when ¢ € (T1, Thaz ),
] U (K cos (w(t — Tmam)) - K+ 1), when t € [Thaz, T3).

The three parameters are the peak value Uy, the pulse rise frequency w =
ﬁ, where T is the time, when glottis opens (T} = 0 in the picture) and
Tmaz is the peak time. The third parameter is the steepness factor for the
falling branch K = (1 — cos (UJ(TQ - Tmaz)))fl, where T5 is the time, when
glottis closes again.
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In Fig. 2.7 there is the output volume velocity pulse (the same pulse as
in Fig. 2.5) and the Fant-model pulse that is fitted to our pulse as described
above. The parameters used for fitting are also shown in the picture.

1 : . .
Fant U, = 0.91338 .
— This model : : \
[
L
_ : : : i
L 0Bl R | -
; . . . . |
2 [
= : : : : I
;g Ol
o : ; : : [
O] L
! B B B [
: : : : |
02_ P T l. .........
: : : : 1
: T, —48283 : T,-5307
0 I ] ] ] I
0 1 2 3 4 5 6

Time {ms)

Figure 2.7: The output volume velocity pulse given by our model and a fitted
Fant-model pulse.



Chapter 3

The vocal tract model

Our purpose is to connect our glottis model to an acoustic load which is modelled
by the Webster’s equation.

Consider first the solution of the wave equation for the velocity potential.
Since we are handling a tube-like domain, we know that the wave motion prop-
agates mainly in the direction of the tube. This motivates us to study only the
solution’s average over each cross-section of the tube. Our goal is to write an
equation approximating the behaviour of this averaged solution, that would be
simpler than the 3-D wave equation. This equation is known as the Webster’s
horn equation.

A complete derivation of this equation can be found in Lukkari and Malinen
(2008b). They also take into account the curvature of the tube, which causes
a correction factor for the speed of sound. The derivation of the Webster’s
equation with curvature will be outlined here.

Before connecting the glottis model and the VT model together, the formant
frequencies and corresponding pressure distributions will be computed in this
chapter. These results can be compared with a 3-D wave equation model by
Hannukainen et al. (2007). This comparison is reasonable because the models
are constructed by using the same data for the VT-geometry.

3.1 The Webster’s equation

3.1.1 Preliminaries

We are looking for an approximate solution to the wave equation

(I)tt = 02A¢, in Q,
(I)t + Hcg—f = 0, on Fl,

(3.1)
g% = 0, on FQ,
g—‘f = u, on I's,

20
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where () is the interior of the vocal tract, I'; is the mouth opening, I's denotes

the walls of the vocal tract, and I's is a control surface above the glottis. The
function ® is a velocity potential, that is, a function satisfying —V® = wv.
The coefficient € in the mouth boundary condition is the normalized acoustic
resistance — a dimensionless coefficient regulating the radiation resistance at
lips.

We shall begin with a path v : [0, Lyr] — R3, which is parameterized by
its arch length, Ly being the length of the vocal tract. This is the centerline
of our curved tube. We define the curvature of the path at point ~(s) by
k(s) = |l (s)]]-

An orthonormal coordinate system is fixed to every point of v. The three
unit vectors are defined by

t'(s)
K(s)

The vector t(s) is called the tangent vector, n(s) is the normal vector and b(s)
is the binormal vector. This orthonormal coordinate system is called the Frenet
frame and it is a right hand coordinate system for R? at all points of the curve,
where £(s) > 0. In the derivation of the Webster’s equation it is assumed that
k(s) >0V s € [0, Lyr).

Next we shall form the tube around the centerline v. To every point ~(s)
we attach a vy(s)-centered disc with radius R(s), which lies on the plane whose
normal vector is t(s). This disc is denoted by I'(s) and it is parameterized with
polar coordinates by using vectors n(s) and b(s) as the basis vectors for the
plane. Thus the tube representing the vocal tract can be written in parameter-
ized form

t(s) :=7'(s), mn(s):= and b(s) :=t(s) x n(s).

Q = {7(s) + rcosfn(s) + rsindb(s) | s € [0,Lyr], r € [0,R(s)), 6 € [0,27)}.

The parameters (s,r,8) can be used as coordinates in the tube and henceforth
they are called the tube coordinates. We make a standing assumption

n(s) := R(s)k(s) <1 Vsel0,Lyr]

which says that the tube does not fold onto itself guaranteeing that the coordi-
nate transformation (s,r,60) — (x,y, z) is bijective. The number 7(s) is called
the curvature ratio.

3.1.2 The derivation of the Webster’s equation

As mentioned before, a complete derivation will not be presented here, and the
readers looking for one are referred to Lukkari and Malinen (2008b). First, it is
assumed that ® is the solution of (3.1). Then the averaged solution is defined as

D(s,t) = Azs) /F(s) PdA, (3.2)

where A(s) = mR(s)?.
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The next steps in the derivation of the Webster’s equation in Lukkari and
Malinen (2008b) are rather lengthy and would require much more preliminary
work, so unfortunately some of the definitions presented here are not very well-
motivated. After writing the wave equation in integral form and using the
divergence theorem, Neumann boundary conditions on the walls of the VT, a
function L(-,-) is defined by

o0 o 51 1 0%®
L(so, 3 ;:/ —dAf/ —dAf/ / —~__dA|ds, (3.3
(50, 51) F(sy) 05 F(sg) 05 o < r(s) 222 Of2 (3.3)

where Z(s,7,60) := (1 —rr(s)cosd) ' is the curvature factor. To gain some
motivation for this definition, let us note that the first two terms here can be
interpreted as the most significant term of % integrated over the piece of the
tube between I'(sg) and I'(s1).

To obtain the desired equation it is necessary to study the limit limg _ 4 L,S(,si_ssl)
In Lukkari and Malinen (2008b) it is shown that (under certain smoothness as-
sumptions) we have for the limit

1 1
lim L(s,s') = / =V <H> - V@dA. (3.4)
s'—s I'(s) = =

The right hand side of (3.4) is the residual of 22 that was not included in the
definition of L. It is assumed to be small and it is included in the error term.
Next, this limit of L is calculated starting from the definition (3.3).

The first two terms in (3.3) are dealt with by showing that for the averaged

solution (3.2) it holds that

3 _
A(s)% _A(s)T + % </F( ) <I>dA>

/
- —A'(s)6+/ 9% jq 4 A1)
I'(s) 85 21

/ " b(s. R(s). 6)d6.
0

It now directly follows that

= 1

i 8&) ' a_ g S S
/m) e A= Als) g +A(s) (@(s) - 27T/0 D(s, R( ),9)d9>. (3.5)

Note that the expression inside the parenthesis is a difference of two means of
®, on I'(s) and OT'(s), respectively.
For the last term in (3.3) the limit of the desired form is easy to see and
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thus, by using (3.5) we get for the limit
. L(s,¢) 0 0P 1 02 o
lim 2% — 2 Paa) - =2 —dA
s’lgls s’ —s 0s (/F(s) 0s > c? ot? /( )y &
) 0P 1 02

+ % (A’(s) <<i> = % ng @(s,R(s),H)d@)) .

Here the first term looks good, and the last term is included in the error. How-
ever, in the middle term we have =2 multiplying ® inside the integral, and
since it depends on r and 6, it cannot be brought out from the integral without
due punishment. Therefore, we shall define the sound speed correction factor as
the average of =72

1 1 / dA 1
= =14 —-n(s)7,
562 T AG) Jo = LTI

where the latter equivalence is obtained by a straightforward calculation from
the definition of =.

In the sense of least squares, the average ¥(s)~2 is the best constant estimate
for function Z(s,r,0)~2 over I'(s). We define the error function

Es,r,0) = E(S,i 57 2(15)2 (3.7)

allowing us to write the middle term in (3.6) in the form

1 92 P A(s) E 9°®
R 2aa) = 2% .
c2 Ot? (/F(s) E2d ) 2%(s)? (’9152 r(s) ¢ Ot2 d (3.8)

By using (3.4), (3.6) and (3.8) we get

1 0% 1 9 Pr
C@(PmQ_M$&(M”%):F@ﬂ+W&m (3.9)

where F' and G contain the error terms gathered from (3.4), (3.6) and (3.8):

e = g (o )
G(s,t) = 23) /F(S) <EA<1> - EV <é) ~V<I>) dA.

Now F(s,t) contains a difference of two averages of the solution of the wave
equation. This difference is small, if the tube area is small. In G(s,t) the term
A® is limited and the error function E(s,r,60) in (Eq. (3.7)) is a difference of

N
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a function and its average over the disc. This difference small, if the curvature
factor is close to one (E = 0 for an uncurved tube). The second term in
G(s,t) is small if the curvature factor n(s) and the components of V@ that are
perpendicular to the tube centerline are small.

Now, for the solution of the wave equation, Eq. (3.9) holds. The Webster’s
horn equation with curvature is

1 0% 1 9 np
IR OF A s <A(s)as> =0. (3.10)

3.2 Numerical solution

We solve numerically the Webster’s equation (3.10) with boundary conditions
corresponding to the wave equation (3.1), that is

{ 9U(0,1) = —v,(t) (3.11)

wt(LVT7 t) + ecaw(lé\s/’r’t) = Oa

where Ly denotes the length of the vocal tract. Here v,(t) is the glottal flow

derived in Section 2.2. Note that the channel area after glottis, denoted by A,
in Section 2.2, is equal to A(0) allowing v, to be used directly as the VT input.
The latter boundary condition models boundary dissipation in the form of flow
resistance p = Opcv.

3.2.1 Weak formulation of the Webster’s equation

Let us first write a weak formulation of the Webster’s equation. First, we shall
write the Webster’s equation in first order form by introducing an auxiliary

function (s, t) = pth(s,t). Then we define W := ﬁ% (A(s)% ), and we get

il 2] Leiw ][]

t
Henceforth let L := 0 P : Z — X, where
' pc(s)?*W 0 |- '
Z = (Hl(o, LVT) n I'IQ(O7 LVT)) X HI(O, LVT);

X := H'(0, Lyr) x L*(0, Ly7).
We equip the Hilbert space X with the inner product

(e [z ) =3 <p / ) () As)ds + = " a(s)aa(s) 2 ds> |

The norm induced by this inner product is the physical energy norm.
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The endpoint control and observation operators are defined by

G E;] = [ ZQ(LvT)_jie(pf)C)zi(LVT) } and  H [iﬂ = 2(0)

where (21 22)T € Z. Now the vocal tract model can be written as a linear

boundary control system

2(¢) = Lz(t()t)

G=() = [ 0 } (3.12)
Hz(t) = pe(t)

z(0) = 2

Here the first, second and fourth equation define the solution z(¢) and the output
is given by the third equation. Malinen and Staffans (2006) and Malinen and
Staffans (2007) treat the solvability of such boundary control systems and in
Lukkari and Malinen (2008a) it is shown that (3.12) satisfies the conditions
required for conservativity and solvability. The reason why the control operator
G is defined in this manner is that now the mouth boundary term is included
in the control term. Thus, the system can be shown to be conservative also
with boundary conditions (3.11) with a small modification of the argument in
Malinen and Staffans (2007).

In order to obtain the weak formulation, we take a test function [U(OS)] ekX
and take the inner product of the top row of (3.12) and this test function:

Eel VD, = CLea [, o

For the left hand side of this we get

qf?ﬁfi] ’ ms)} >X =3 /0 " % 8225)/1(5)515

and the right hand side

CRER] IO = (Lew 70 [ [9D),
t

(et LoD = e lee] L)) e
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Now the left hand side is

([Hon T = g [ 2 A0

and the right hand side
0 pt P 0
pc(s)*?W 0 ] |v(s)] /[y
1

AR
— /0 LVTpc2E(s)2W¢(s,t)v(s) A 4

2pc? ¥(s)?
1 Lvr g (s, t)
= 5/0 s (A(s)as> v(s)ds.
Partial integration yields
vl [ o LT 9u(s,t) 1 [Evr oy (s,t) Bu(s)
<L |:7T:| ’ [v(s)] >X T2 0 Al®) s v(s) = 5/0 Als s 0s (;j5)

3.2.2 Spatial discretization

The basis functions of the element space are formed next. First, the vocal tract
is divided into N slices of equal length As := Ly /N. Then, we shall define
piecewise linear functions v;(s), j =1,...,N +1 by

sUZDAs g [(j - 2)As, (- 1A,

vj(s) ==q =28 s [(j - 1)As,jAs],
0, s ¢ [(j—2)As,jAs].

For j = 1, the definition on the top row, and for j = N + 1 the definition on
the middle row do not apply. The functions v; are called hat functions because
of their form. The function v; reaches value 1 at point s = (j — 1)As. This
means, that for the first basis function v1(0) = 1 and for the last basis function
uny1(Lyr) =1

Thus, we are looking for an approximate solution of (3.12) of the form

N+1

{ fgiff } =2 (fi(t) { Ui(()s) } + pi(t) { v,-(()s) D : (3.16)

’ i=1
such that the residual is orthogonal to all of the basis functions. If we now
insert this into Egs. (3.13) and (3.14) and instead of some v(s) we take the

inner product with all the basis functions, we get 2(N + 1) equations which can
be written in matrix form

PKE() = Kp(t),
{Mﬂ(t) = —K¢(t) —Ru+b(t) (3.17)



CHAPTER 3. THE VOCAL TRACT MODEL 27

corresponding to (3.12). Here

1 Lyr A(s)
M” = 2p02/0 Ui(S)Uj(S>WdS,
1 Lyr
K,;, = 5/ vi(s)vj(s)A(s)ds, (3.18)
0
n AR enimjo N
J 0, otherwise,

@vo(t)7 when j = 1;
0, when j # 1.

The damping matrix R and the load vector b are gathered from the substitu-
tion term in (3.15) by using the boundary conditions (3.11) for the Webster’s
equation. Since the stiffness matrix K is invertible, it can be eliminated from
the first equation of (3.17).

3.2.3 Temporal discretization

Next task is the time discretization. We replace &(t) and p(t) with approximative
solutions &" =~ £(t,) and p"™ = p(t,), for which the Crank-Nicholson method
(see Malinen and Havu (2007)) can be written as

n—1

T
n n—1 n n—1 n n—1
ME—— = SKSEE - REHE 4 b(t,),

To avoid inverting an ill-conditioned matrix, this system of equations is written
as a double recursion instead of a 2(N + 1)-sized matrix equation. Thus, we
eliminate " from the lower equation obtaining the update equations

{((RLEMRE — (R EM R M bl
pg" — S = pg" + S5

(3.19)
so ™ is first solved from the first equation by matrix inversion, and it is then
inserted to the second equation from which ™ is solved.

The time steps are the same that are used in solving the equations of motion
and the ODE for v,, so we readily have the value v,(¢,), which is needed in the
evaluation of b(¢,). Since the time step is constant except on the steps when
the glottis closes or opens, the inverse of the matrix on the left hand side of the
first equation in (3.19) is pre-computed in order to make the simulation faster.
When time step is not constant, the matrix equation must be solved separately.

3.2.4 Resonance model

Before performing any time domain simulations, we shall compute the formant
frequencies from the Webster’s equation. This will be done first for an uncurved
tube and then for a curved one.
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The resonances of the Webster’s equation can be solved by finding the dis-
crete frequencies A and their corresponding eigenfunctions (pressure distribu-
tions) [1x(s), m(s)]T satisfying

vl = L)
(3.20)
G| = o
T

1/),\(5,25)} = M |:¢)\(5):| of the eigenfunction
(s, t) mA(S)
clearly satisfies Eq. (3.12). Thus, the imaginary part of A is an (angular)
resonance frequency.

Again, by writing the weak formulation for Eq. (3.20), setting the con-
trol to zero and applying spatial discretization, we obtain a generalized matrix
eigenvalue problem

The time harmonic extension [

Ky = \2pMyuy. (3.21)

In order to be able to compare these frequencies with those given by the 3-D wave
equation (computed in Hannukainen et al. (2007)), we have used the Dirichlet
boundary condition at the mouth here. This explains the absence of the damping
matrix R. Also K and M are N x N matrices instead of (N +1) x (N +1) as in
Eq. (3.17). If the number of elements N is high enough, the eigenvalues of the
discretized system are good approximations of the eigenvalues of the original
system, especially in the case of the smallest eigenvalues. In our simulations we
have used N = 100.

3.2.5 Data

We shall use the MRI data provided by Olov Engwall from KTH, Stockholm.
The raw data was collected from a native male Swedish speaker pronouncing a
prolonged vowel [¢:] in supine position. Engwall and Badin (1999) describe the
MR imaging procedure and also present the corresponding formant measure-
ment data.

The same data was also used in a 3-dimensional wave equation model by
Hannukainen et al. (2007). For this reason, we can compare the 1-dimensional
Webster’s equation to the actual 3-dimensional wave equation — at least in
frequency domain.

The MRI data consists of 29 cross-sectional slices of the vocal tract. However,
the slices were not perpendicular to the centerline of the tract, so the slices could
not be used as such. First, we determined the centerline of the vocal tract by
connecting the centers of mass of each slice. Then, a tangent vector of the path
was numerically evaluated at all 29 points, and the slices were projected on
the plane perpendicular to this tangent vector. The processed data is shown
in Fig. 3.1. The areas of each of the slices were then calculated as well as the
circumferences which are needed for evaluating the hydraulic radius as described
in Section 2.2. The cross-sectional area is shown in Fig. 3.2 and the hydraulic
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Figure 3.1: The processed MRI data used for constructing the VT-model and
the centerline of the tract. The units are in meters. The mouth is at the top

left corner and the glottis at the lower right corner.
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Figure 3.2: The cross-sectional area of the VT, perpendicular to the VT cen-
terline. The s-axis is parameterized as the distance from the glottis measured

along the centerline.
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Figure 3.3: The curvature ratio of the VT-tube.

radius in Fig. 3.4. In these figures, the s-axis is parameterized by the arch
length of the centerline.

Finally, the sound speed correction factor was computed by numerically
evaluating the curvature k(s) of the centerline and approximating the tube
radius by R(s) = v/A(s)/m. Fig. 3.3 shows the curvature ratio n(s) along the
VT. Let us note that the curvature ratio is always distinctly less than one, as
assumed in the derivation of the Webster’s equation. Even though the curvature
ratio varies a lot along the VT, the sound speed correction factor X(s)™2 =
1+ 17(s)? varies between 1 and 1.132.

The value for the normalized acoustic resistance 6 (see Eq. (3.1) and the
expression of R;; in Eq. (3.18)) was experimentally chosen to be 0.06. There
are many approaches in the literature for the VT termination and most of these
produce a frequency dependent (and complex) impedance.

One approach is to use the impedance for a piston-like source set in a sphere.
This kind of model yields an analytical expression in form of an infinite series.
For this reason, a more widely used model is obtained by letting the ratio of the
radii of the piston and the sphere approach zero corresponding to a piston set
into an infinite wall. Then the acoustic resistance factor # with low frequencies

2,2
is approximately w2;m where w is the angular frequency of the acoustic radiation
and r,, is the radius of the piston. Both of these approaches are treated in e.g.
Morse and Ingard (1968) (Chapter 7). Our choice for 6 corresponds to source

frequency of around 2200 Hz.
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Figure 3.4: The hydraulic radius of the vocal tract by equation (2.8) and the
data presented in Section 3.2.5.

3.2.6 Results

The lowest formant frequencies F1,...,F4 for an uncurved (X(s) = 1) and a
curved tube are presented in Table 3.1. For comparison, there are also the
corresponding frequencies from a 3-D wave equation model by Hannukainen
et al. (2007) and the formants measured by Engwall and Badin (1999) from
the same test subject. To make the comparison reasonable, we have used the
Dirichlet boundary condition at mouth as in Hannukainen et al. (2007).

Our principal purpose is to compare the Webster’s equation to the 3-D wave
equation. These formants are very close to each other. However, for some
reason, the uncurved tube seems to be even better than the curved tube. Some
of the reasons for the discrepancy between the computed and measured formants
is discussed in Hannukainen et al. (2007).

Table 3.1: Formants for [¢:] in kHz, from our Webster’s equation in an uncurved
and a curved tube, from the 3-D wave equation by Hannukainen et al. (2007)
and formants measured by Engwall and Badin (1999).

F1 F2 F3 F4
Webster, uncurved 0.66 1.35 2.68 3.76
Webster, curved 0.64 1.32 264 3.71
HLMPO7 0.68 135 271 3.79
EB99 0.50 1.06 248 3.24
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Fig. 3.5 shows the pressure distributions (element approximations of

™ = sz:ll L kVk(s), see Eq. (3.21)) related to formant frequencies F1,...,F4.
These are computed for the curved tube, but here the difference between the
curved and uncurved tube was insignificant. When comparing this with the
corresponding figure (Fig. 2) in Hannukainen et al. (2007), it is very difficult to
see any difference. This could be expected because the pressure varies mainly
in the direction of the VT. However, they report a weak cross-mode resonance
in the oral cavity related to F4. This kind of phenomenon is, of course, not
accounted for by a 1-D model such as the Webster’s equation.

{mmj)

{mmj

(mm)

I
0 0.05

[mm)
=}

0 0.05 01 015

Figure 3.5: Pressure distributions corresponding to formants F1,...,F4.



Chapter 4

Full model simulations

In this chapter we shall present the results of time domain simulations of the full
model. In Section 4.1 the model is simulated as a feedforward model so that the
VT model is simply excited with the glottis pulse and the pressure at the lips
is observed. In Section 4.2.1 we shall investigate the effect of the mechanical
feedback from the VT to the glottis introduced in Section 2.3.1. Finally, in
Section 4.2.2 the glottis model is coupled to a tube with constant area function.
The length of this tube is varied for tuning the lowest formant frequency.

4.1 Simulations without feedback

First simulation was performed with the same parameters as the first glottis
model simulation (Fig. 2.4). That is, symmetric glottis parameters and the
fundamental frequencies of the vocal fold vibrating modes were 100 Hz and
105 Hz. The result is shown in Fig. 4.1. The top picture shows the volume
flows through the glottis and the mouth. Note that the acoustic vibration does
not proceed through the open glottis but the flow there is fully determined by
the glottal flow model. The pressure at mouth opening is shown in the second
picture and the spectrum of this signal in the third picture in Fig. 4.1. The
lowest picture shows the spectrum of the glottal flow. The spectra contain peaks
at frequencies mFy, where m is an integer and Fy is the vocal fold oscillation
frequency (118 Hz). The VT formant frequencies cannot be seen as such, but
in the speech signal spectrum the peaks that are close to formant frequencies
are clearly amplified. For example the first formant frequency F; = 640 Hz is
between the peaks at 5Fj and 6Fy. Between every multiple of Fy there are five
subharmonics with intervals of 16.8 Hz in both spectra.

33
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Figure 4.1: The volume flows through the glottis (VT-model input) and through
the mouth and the pressure at mouth in a feedforward simulation. Below there
are the spectra of the pressure at mouth and the glottal flow.

4.1.1 Inverse filtering the obtained signal

In order to validate our model, the pressure at mouth was inverse filtered by
iterative adaptive inverse filtering (IAIF) method developed in Alku (1992). For
this we used a MATLAB-based toolkit, TKK Aparat (see Airas (2008)). This
method estimates the VT transfer function in an iterative manner using all-pole
modelling. This transfer function is then used together with a lip radiation
model for inverse filtering.

in the Aparat the maximum number of formant frequencies to be modelled
by the vocal tract filter can be chosen by the user as well as the value of the
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first order lip radiation model. Fig. 4.2 shows the glottal flow given by our
model and the inverse filtered signal. In the transfer function estimation we set
the maximum number of the formants to be fitted to 11 and the lip radiation
coefficient to 0.97. Table 4.1 shows the values of the estimated VT formants,
that were below one half of the sampling frequency (here 19 kHz), and those
computed from the Webster’s equation with boundary conditions (3.11). Note
that the formants in Table 3.1 were computed using Dirichlet boundary condi-
tion at mouth, which explains the small discrepancy between these two. With
greater values of the acoustic resistance coefficient 6 this discrepancy obviously
grows. Three lowest formants are estimated rather well, whereas the rest are
systematically smaller.

The glottal flow estimated by inverse filtering seems to have problems in
capturing the rapid ending of the pulse. The reason for this is that rapid changes
in the signal correspond to higher frequencies in the spectrum. Since there
seems to be a systematic error in the estimated transfer function related to the
higher formants, it can be expected that these changes cause error in the inverse
filtering procedure.

Table 4.1: Formants for [¢:] in kHz given by our Webster’s equation and for-
mants estimated by the TATF method

F1 F2 F3 F4 F5 F6 F7 F8 F9
Webster 0.66 131 265 371 5.15 681 7.23 830 9.23
Estimated 0.66 132 261 3.65 5.06 647 6.84 7.73 8.62

I | L |
0 0.00% 001 0015 002 002s 003 0035 004 0045 003
Time (s)

Figure 4.2: The glottal flow obtained by inverse filtering and the flow given by
our model
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4.2 Simulations with feedback

4.2.1 Realistic VT-geometry

The mechanically coupled counter pressure from the vocal tract always seemed
to have a damping effect on the vocal cords. For this reason we had to diminish
the glottal damping terms b;; from 0.1 Nm/s in the feedforward system to
0.065 Nm/s in the feedback system to sustain continued oscillation. As before,
this value was found experimentally. Other parameters were first kept the same
as earlier.

Here the effect of the feedback is rather mild, even so, that the different
situations could not be identified only by observing the pressure at mouth.
A small ripple can be seen in the glottal area function, but the glottal flow
pulse is not very sensitive to this ripple. The spectrum of the glottal flow is
not influenced by the feedback. A slight additional skewing of the pulse can
be observed. If we calculate the ratio of the pulse acceleration time to the
whole open phase duration, that is % (see Section 2.4.4) it is 90.6 % for
the system without feedback and 91.5 % for the system with feedback. The
change in the glottis dynamics is illuminated in Fig. 4.3, which shows the
phase diagrams of the glottal oscillation in two cases. The upper left picture

0.04

dw1 1de (mi/s)
dw1 E/dt (mi/s)

[ I Y S S

: : -0.04 - -
5.4 56 5.8 -g.08  -0.08 -0.04 -0.02 0
W (mimj Wo (mmj

dw1 1fdt (mis)
dw1 2/dt (mis)

54 56 58 T2 0.1 0 o1
w,, mmj W, (mm)

Figure 4.3: The phase diagrams of the glottal oscillation from a simulation
without feedback (top) and a simulation with feedback (bottom). Pictures on
the left show the behaviour of the cords in the narrow end of the glottis and
pictures on the right show the behaviour of the cords in the wide end.



CHAPTER 4. FULL MODEL SIMULATIONS 37

shows the curve (wi1(t),w11(¢)) and the upper right picture shows the curve
(w12(t),w12(t)) in the simulation without feedback. In the lower pictures there
are the same curves in the simulation with feedback. In both cases the oscillation
is perfectly periodic, meaning that the cycles in the phase diagrams are stable.
The vibration pattern of wqs changes significantly when the feedback is present,
but this could be expected since the aerodynamic force is much weaker in the
wide end of the glottis thus making the feedback more influential.

4.2.2 Straight tube as the resonator

More interesting is what happens when the vocal fold vibration frequency Fy is
closer to the lowest formant frequency F} or when 2Fy =~ F;. Here this effect
is studied by using an uncurved tube shown in Fig. 4.4 as the resonator. The
area of the tube at s = 0 is chosen so that it coincides with A(0) of the realistic
geometry used earlier. The area after the expansion is the same as the area of
mouth. Also the boundary conditions in both ends of the tube were the same
as in the earlier simulations with the realistic VT geometry (Eq. (3.11)).

Two sets of simulations were performed. In the first one, the glottis model
parameters were the same as earlier. The tube length was varied between
0.20 m ... 0.71 m thus spanning the frequency range 123.2 Hz ... 438.8 Hz
covering three multiples of the source frequency Fy. These tube lengths are
rather unrealistic considering human VT, but the sole purpose of this experi-
ment is to study the feedback effect when Fyy and F; are close to each other.
By varying only the tube length we can exclude any internal changes in the
glottis so that all changes in the glottal vibration pattern are caused by the
coupling. In reality, Fy — F; crossovers can occur, but obviously with higher
source frequencies Fy (see Titze et al. (2008)).

The spectrogram with different values of Fj is shown in Fig. 4.6. This
is a slightly nontypical spectrogram, because the z-axis variable is not time,
but the formant frequency Fj. All simulations are independent with default
initial conditions. The simulations have been long enough and the beginning
of each simulation has been excluded from the data, so that there is no effect

P =
lcm 2cm
—
Lot

Figure 4.4: The geometry for testing the feedback effect for different resonator
formant frequencies F;. The length of the tube was varied for tuning F;.
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Figure 4.5: The source frequency Fy as a function of the lowest VT formant
frequency F} in the first set of simulations with the straight tube. The auxiliary
lines are F(] = Fl, 2F0 = Fl and 3F0 = Fl.
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Figure 4.6: The spectrogram of the pressure signal when F} is varied. The line
shows Fi in the spectra and the diamonds show the source frequency Fp in each
simulation.
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from initial transitions. One simulation corresponds to one tube length. The
figure also shows the source frequencies Fp in every simulation and an auxiliary
line showing F) in the spectrogram. The source frequencies are also plotted
in a more illustrative scale in Fig. 4.5 with lines Fy = Fy, 2Fy = F; and
3Fy = F;. This picture clearly shows what happens to Fj; when F} crosses some
of its multiples. When F; ~ Fj, the source frequency locks in to the formant
frequency, until it gets too far from the natural source frequency. A similar but
weaker phenomenon can be seen when 2Fy ~ F; (and also when 3Fy ~ F}).

In the second set of simulations the glottis model was tuned so that its
natural frequency was higher (233 Hz). This was achieved by increasing the
stiffness coefficients to k13 = ko; = 682 N/m and k13 = koo = 379.5 N/m. Also
the glottal gap was narrowed to g = 0.2 mm and the subglottal pressure was
increased to 1800 Pa. Now the tube length was varied between 0.16 m ... 0.50 m
so that the corresponding F} frequency range was 175 Hz,...,560 Hz covering
two multiples of Fyy. The source frequency’s dependence on F} is shown in Fig.
4.7. Now Fj remains locked in to F; much longer and F climbs as high as
400 Hz. After the frequency drop, Fj settles on a level about 20 Hz higher
than before the "climb”. The effect of 2Fy — Fj-crossover is milder now than
in the first set. The bump in Fy in this crossover is here only about 8.5 Hz
compared to 13 Hz in the first set.

450

200 250 300 350 400 450 500 550
F1 (Hz)
Figure 4.7: The source frequency Fp as a function of the lowest VT formant fre-

quency Fj in the second set of simulations with the straight tube. The auxiliary
lines are Fy = F; and 2F, = Fj.

4.3 Comparison to other works

Titze (2008) has created a nonlinear source-filter coupling theory and Titze
et al. (2008) created three vocal exercises for human test subjects for studying
this coupling in practise. They reported that when the interaction between the
source and filter is mild, that is, when the dominant source frequency lies well
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below the lowest VT formant frequency, the effect of the coupling can be seen in
the glottal flow pulse skewing and pulse ripple. Our results are well in line with
this observation (see Section 4.2.1 and Fig. 4.3). When the source frequency
Fy and the lowest formant frequency Fj are closer to each other (or even when
2F, ~ F}), the feedback can cause a sudden jump in the source frequency. Our
model reveals a synchronization phenomenon. This means, that when Fj is
close to Fy or some of its multiples, the oscillation frequency of the mass-spring
system changes so that the two systems are synchronized. This synchronization
could contribute to some of the phenomena reported by Titze et al. (2008) (Figs.
5C and 10D).

They also reported two other kinds of bifurcations besides frequency jumps,
namely subharmonic regimes (spectral peaks at frequencies %FO7 k=1,3,5,...)
and chaotic oscillation. Our model reveals five subharmonics between every
multiple of Fp, and they are stronger near 2Fy— F; crossover but not remarkably
(see Fig. 4.6). Chaotic oscillation never occurred in our simulations, even when
the subglottal pressure ps,p, was increased up to 3300 Pa, or when the glottis
model parameters were set unsymmetric (m21 =12 mn).

Hatzikirou et al. (2006) have also created a similar two mass model of glottis
and simulated it with a tube of varying length as the acoustic load. They
also report frequency pulling by Fy. In addition, the subharmonics occur much
clearer in their simulations as they do here.



Chapter 5

Discussion

Chapter 2

The primary target of this work was to construct a low order nonsymmetric
mass-spring model with a 1-D flow model. This task was carried out in Chapter
2. The used flow model takes into account viscous pressure losses in the glottis
and VT. The vocal tract inertance is also included in the flow equation, Eq.
(2.12). However, the flow pulse (Fig. 2.7) seems to be slightly too much skewed
towards the end of the open phase. Reasons for this lie in our harsh assump-
tions that the flow is laminar and incompressible. Because of the laminarity
assumption, the pressure loss in the glottis and vocal tract given by our model
is likely to be smaller than in reality. This is because turbulent flow and ex-
cluded phenomena on the tissue surface (e.g. mucosal vibrations) might cause
energy dissipation to heat.

The incompressibility assumption has an effect on the inertia of the air col-
umn in the VT. (coefficient Cjyer in Eq. (2.12)). Because the flow is, in fact,
compressible, there is hidden spring reaction which would temporally divide the
change in momentum in a different way. For this reason the inertia coefficient
in the model may appear too large. Also the pressure loss in the VT effectively
grows, if the incompressibility assumption is omitted.

Instead of constructing a dynamical compressibility model, the inertance
Ciner and the pressure loss coefficients C,; and Cy 1 could be fitted in an optimal
way so that the pulse would match as well as possible the glottal pulses obtained
by inverse filtering. This procedure is illustrated in Fig. 5.1. It shows an LF-
model pulse which was obtained by first inverse filtering with the TAIF method a
natural [a] vowel, produced by a male speaker using pressed phonation. The LF-
model parameters were obtained using the Aparat toolkit. In creating pressed
speech, subjects typically increase adduction of their vocal folds, hence resulting
in a glottal flow with long closed phase and a short closing phase.

The parameters for the modelled pulse are obtained by creating a pulse
using Eq. (2.12) and approximating AW; = Asin(wt), where t € [0, 7/w]. The
squared error between this pulse and the LF-pulse was minimized by adjusting

41
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the parameters Cjper, Cg and Cyr in the flow equation. This was done by using
MATLAB’s built-in command fminsearch. However, after optimal parameter
estimation, the pressure loss due to the flow through mouth and the pressure
loss in the VT turned out to be negligible. After omitting these terms we are
left with three parameters but only two terms in the flow equation. This means
that same pulse is obtained with infinitely many parameter combinations. A
reasonable combination minimizing the squared error is pgy, = 550 Pa, Ciper =
2.35 - 10° kg/m* and C, = 8.24 - 1072 Ns. The values computed earlier are
Ciner = 3.30 - 103 kg/m* and C, =822 10~ Ns.

The pulses in Fig. 5.1 are very close to each other. This suggests that the
LF-pulse can be faithfully constructed with a crude physical model.

—LF
—— Model
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Figure 5.1: The modelled pulse and an LF-pulse obtained by inverse filtering
[a] vowel produced by male speaker using pressed phonation

Chapter 3

The VT model was presented in Chapter 3. First, such a variant of the Webster’s
equation was presented, that includes a contribution due to the tube curvature.
This variant is derived in a manuscript Lukkari and Malinen (2008b). Then the
state space was discretized by a FE method, using the physical energy norm of
the state space. Crank-Nicholson discretization was applied in the time variable.

A secondary purpose of this work was to compare the spectral properties of
the Webster’s equation (with and without curvature) with the 3-D wave equa-
tion. Hannukainen et al. (2007) computed the formant frequencies by using the
3-D wave equation. The data for the Webster’s equation, that is, the VT cross-
sectional area function and the curvature of the VT centerline, were obtained
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from the same MRI data that was used also by Hannukainen et al. (2007).

It was noticed that the formant frequencies given by both variants of the
Webster’s equation were quite close to the formants given by the wave equation.
The four lowest formants given by the uncurved Webster’s equation were on
average 1.2 % lower, and the formants from the curved equation were on average
3.2 % lower than the formants given by the wave equation (see Table 3.1). This
difference could be explained by the choice of the VT centerline as the center of
mass of each cross-section. This way the tube might become effectively longer,
than in the 3-D equation, because in the 3-D geometry a wave propagating
in the VT can "take a shortcut” in the curves of the tube. In the Webster’s
equations case, this is of course impossible. Furthermore, since the sound speed
correction factor in the Webster’s equation with curvature is always less than
or equal to one, the curvature factor in the equation makes the tube effectively
even longer, which lowers the formant frequencies even more. This questions the
usability of the Webster’s equation with curvature as such, at least in acoustic
applications. When the curvature ratio is small, the Webster’s equation with
curvature becomes more accurate but the effect of the curvature is negligible.
When the curvature ratio is greater, the curved equation fails to describe the
curvature effect correctly.

One possible way to fix the situation is to scale the total length of the tube.
By dimension analysis, the formant frequencies would then be scaled similarly.
So instead of studying the absolute values of the formant frequencies, we should
compare the relative frequencies F),/F;. However, these were very close to each
other for both curved and uncurved case so we cannot make any conclusions
based on these computations. In addition, we cannot use the higher formant fre-
quencies because the formants from the wave equation are distorted (upwards)
by the crossmode resonances. Also the geometry used for constructing the data
is certainly not exactly such as it is assumed in the derivation of the Webster’s
equation. That is, the tube cross-sections are not circular.

Another shortcoming of our model is the lack of dissipative terms in the vocal
tract. The physical interpretation of the Neumann boundary condition at the
walls of the VT is that the material of the tube walls is absolutely inflexible. In
reality, the walls of the VT are elastic and the vibration of the air is transmitted
to the tissue causing dissipation at walls. Viscous losses are not included in
the Webster’s equation either. Thus the only dissipation in the model is the
flow resistance at lips: pres = 0pcv,,. The normalized acoustic resistance 6 is
here more or less arbitrarily chosen, but refining the model here by physical
considerations would be rather useless as long as other dissipation is excluded.

Chapter 4

The results of the full model simulations are shown in Chapter 4. The model
output seems all right and the spectra of both mouth pressure signal and the
glottal flow are believable. The results were also well in line with earlier findings:
when the source frequency Fj is well below the lowest VT formant frequency Fi,
the VT feedback effect is rather weak. Only when the frequencies were close to
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each other, the feedback caused bifurcations in the source vibration. However,
the only type of bifurcation revealed by our model was the source frequency
lock-in to the formant frequency F; when Fj approached Fy or when Fy ~ 2Fj.

Experimental studies by Titze et al. (2008) revealed also subharmonic and,
with some test subjects, even chaotic regimes at these frequency crossovers. In
their experiments the frequencies Fj and F; changed dynamically, so that it is
impossible to say whether these phenomena were steady or only transitional.
Our simulations for studying the feedback effect in Section 4.2.2 were separate
for different values of F} so that no transitional bifurcations can be detected.
In reality, there are of course other phenomena besides the VT acoustics that
can have an effect on the glottal behaviour.

Hatzikirou et al. (2006) also performed similar simulations as we in Section
4.2.2, but with such a feedback configuration that the VT feedback had a direct
effect on the glottal flow. Their model revealed subharmonics in the spectrum
of the position of one mass in their mass spring model of the glottis.
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Appendix A

The MATLAB-code

The structure of the code is such that there are two initialization files, init.m
and VTdata.m. The init.m-script has to be run before every simulation. The file
VTdata.m only needs to be run once unless changes are made. Unfortunately
the original VT data can not be provided.

The file solver.m does the simulation. It calls functions ff.m, which is the
time derivative of the state vector (from the equations of motion of the glottis),
NewV.m, which computes the glottal flow and interpol.m which performs the
interpolation as described in Section 2.4.1.

A.1 File init.m

%In this file the physical parameters of the (glottis) model are
%initialized

global d step rho width L mu;

%===SIMULATION PARAMETERS===

NumIts=5000; %Number of iterations

step=0.00002; %Time step length

N=100; #%Number of discretization points in the VT
fb=1; Y%Feedback on (1) or off (0)

continue=0; %Continue previous simulation? 1/0

%===PHYSICAL PARAMETERS===

rho=1.2; %Air density

c=343; %Speed of sound

mu=18.7e-6; #%Dynamic viscosity of air
HO=11.2%10"-3; %Height of the subglottal channel

47
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width=18%10"-3; %Width of the subglottal channel

L=6.8%x10"-3; %Length (or thickness) of the glottis

Kh=730; %Retrieving stiffness in vocal cord contact

aa=0.85; %The x-coordinates of the springs are aaxL and bee*L

bee=0.15;

theta=.06; #%Mouth resistance coefficient in VT boundary condition

% When glottis is narrower than this, it is closed and flow is set to
% zero (epsilon in the report)
d=2.5e-5;

%---Parameters for cord #1---
%Masses

mli=1.686e-4;

m12=0.595e-4;

ml13=2.531e-4;

%Stiffness coefficients
k11=124;
k12=69;

%Damping coefficients
b11=.065;
b12=.065;

%The equilibrium state when there is no flow
Y_110=5.4%10"-3;
Y_120=0;

%---Parameters for cord #2---
%Masses
m21=ml1;
m22=m12;
m23=m13;

%Stiffness coefficients
k21=k11;
k22=k12;

%Damping coefficients
b21=b11;
b22=b12;
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%The equilibrium state when there is no flow
Y_210=5.8%10"-3;
Y_220=HO;

%===INITIAL CONDITIONS===

%---Initial values for the glottis---
if continue > .5

xend=x(1:8,end); %Storing the final state of previous
end %simulation
x=zeros (9,NumIts+1); %The solution points are stored here

if continue > .5
%Continuing previous simulation
x(1:8,1)=xend;

else
%#Glottis initially closed (determined by simulating with constant
x(1,1)=0.00574388213041;
x(2,1)=0.07929750365587 ;
x(3,1)=-0.00013732214913;
x(4,1)=-0.03349122869515;
x(5,1)=0.00545611786959;
x(6,1)=-0.07929750365587 ;
x(7,1)=0.01133732214913;
x(8,1)=0.03349122869516;

end

%---Initial value for the glottal flow---

if continue > .5
Vend=Vout (end) ;
else
Vend=0;
end
Vout=zeros (NumIts+1,1);
Vout (1)=Vend;

%---The initial state for the VT---

if continue < .5
xi=zeros(N+1,1);
eta=zeros(N+1,1);

end

%---Forming the mass, stiffness and damping matrices---
M1=[m11+m13/4,m13/4;m13/4,m12+m13/4];

49
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M2=[m21+m23/4 ,m23/4;m23/4 ,m22+m23/4] ;

M1_inv=inv(M1);

M2_inv=inv(M2);

Ki=[aa~2xkll+bee~2*xk12, aax*(l-aa)*kll+beex(1-bee)*kl12;
aax(1-aa)*kll+beex(1-bee)*kl12, (1-aa) "2*kll+(1-bee) "2%k12];

K2=[aa~2*k21+bee~2%k22, aax*(l-aa)*k21+bee*(1-bee)*k22;
aa*(1-aa)*k21+beex(1-bee)*k22, (1-aa) 2*k21+(1-bee) 2%k22];

Bi=diag([b11 b12]);

B2=diag([b21 b22]);

kerr=L*width*rho*H0~2; JAuxiliary coefficient

open=y210-y110>d; %Test whether the glottis is initially closed

A.2 File VTdata.m

%This file processes the VT data and determines the centerline of the VT,
%the curvature of it and the cross-sectional area function

global Ao Am vakiol vakio2

%Importing the data and removing the false slices from the mouth. The data
%consists of three matrices containing the X-, Y- and Z-coordinates of the
#%VT boundary points. One row contains the information of one slice.

neutral_tract; %This imports the data
X3D(29, :)=X3D(34,:);

Y3D(29,:)=Y3D(34,:);

Z3D(29, :)=Z3D(34,:);

X3D=X3D(1:29,:);

Y3D=Y3D(1:29,:);

Z3D=Z3D(1:29,:);

%Change of units: cm -> m

X3D=.01%X3D;
Y3D=.01%Y3D;
Z3D=.01%Z3D;
nsl=size(X3D,1); %Number of SLices
pps=size(X3D,2); %Points Per Slice

%Initially the VT centerline is determined as the center of mass of the
%boundary points. The Y-coordinate (corresponding to right-left direction)
%is left zero. Other coordinates are X (forward-backward) and Z (up-down)
cpath=zeros(3,nsl);

cpath(1, :)=mean(X3D’);
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cpath(3, :)=mean(Z3D’);

%In matrix VT the first row contains the parameter s (centerline arch length
%parameter), second row contains the hydraulic radius, third is the cross
%sectional area and fourth is the sound speed correction factor 1/Sigma(s)~2.
VT=zeros(4,nsl);
VT(1,2:end)=cumsum(sum((cpath(:,2:end)-cpath(:,1:end-1))."2).~.5);

%Then the slices are projected on planes whose normals are tangents of the
%centerline at each slice. In addition, the area and the hydraulic radius
%of each slice are determined. Also the centerline is corrected to match
%the center of mass of the slice.

%First the tangent vectors of the centerline are determined and stored
normals=[cpath(:,2)-cpath(:,1),cpath(:,3:end)-cpath(:,1:end-2),
cpath(:,end) -cpath(:,end-1)];

for k=1:nsl
%k:th normal vector is rotated 90 degrees and normalized to unit length
abu=[normals(3,k);0;-normals(1,k)];
abu=abu/norm(abu) ;

%The previous projection is stored here. Initially it is the last point to

%be projected (that is pps:th point)

0ld_proj=abu’*([X3D(k,pps) ;Y3D(k,pps);Z3D(k,pps)]-cpath(:,k))*abu+
[0;Y3D(k,pps)-cpath(2,k) ;0] ;

%This vector is the correction to the centerline at k:th slice
correction=zeros(3,1);
for j=1:pps
%proj is the datapoint projected on the plane with respect to
horigin at the center of the slice
proj=abu’*([X3D(k, j);Y3D(k, j);Z3D(k,j)]-cpath(:,k))*abu+[0;Y3D(k,j)-cpath(2,k);0];

%change of the origin to the original one
X3D(k, j)=cpath(1,k)+proj(1);
z3D(k, j)=cpath(3,k)+proj(3);

%This "area" is the area of a triangle formed by the center of the slice

%and points "proj" and "old_proj".

%This area can be negative if the slice is not convex.

area=sign(normals(:,k) ’*cross(proj,old_proj))*abs(acos(proj’*old_proj/
norm(proj)/norm(old_proj))/8*(norm(proj)+norm(old_proj))~2);

VT(3,k)=VT(3,k)+area;

%The average of "proj" and "old_proj" is weighted with the area of
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%the triangle and it is added to the "correction"-vector
correction=correction+area/2* (proj+old_proj);
#First the circumferences are stored here
VT(2,k)=VT(2,k)+norm(old_proj-proj);
old_proj=proj;
end
%The "correction" is divided with the whole slice area because of the
Jweighting. The centerline is then corrected.
correction=2/3/VT(3,k)*correction;
cpath(1,k)=cpath(1,k)+correction(1);
cpath(3,k)=cpath(3,k)+correction(3);

end
clear(’abu’, ’proj’,’old_proj?)
VT(2,:)=2*%VT(3,:)./VT(2,:); %The hydraulic radius is r_h=2A/C.

%The fourth row of "VT" contains the correction factor for the speed of
%sound. If they are replaced with ones, the tube is assumed uncurved.
kaps=zeros(nsl,1);
for k=1:size(VT,2)-2

hyp=norm(cpath(: ,k+2)-cpath(:,k));

li=cpath(:,k+1)-cpath(:,k);

12=cpath(:,k+2)-cpath(:,k+1);

kappa=2#* (1-(11°%12)~2/norm(11) ~2/norm(12)~2)~.5/hyp;

kaps (k+1)=kappa;
end
VT (4,:)=1+VT(4,:)./VT(3,:);
VT(4,:)=1+.25%VT(3,:)/pi.*kaps’."2;
clear(’hyp’,’11’,°12°,’normals’, ’kappa’, kaps’)

%The s-axis is discretized for the FEM-solver
Lvt=VT(1,end); %Length of the VT (=arch length of the centerline)
ds=Lvt/N; %Discretization interval

%The data is modified to correspond to this discretization, that is the
%data is interpolated in the points of discretization. This data is stored
%to the matrix "VT2".
VT2=zeros(4,N+1);
VT2(1,:)=ds*(0:N);
VT2(2:4,1)=VT(2:4,1);
VT2(2:4,end)=VT(2:4,end) ;
for k=2:N
ind=find (VT(1,:)<=(k-1)*ds,1,’last’);
VT2(2:4,k)=((k-1)*ds-VT(1,ind))/(VT(1,ind+1)-VT(1,ind))*VT(2:4,ind+1)+
(VT(1,ind+1) - (k-1)*ds)/(VT(1,ind+1)-VT(1,ind) )*VT(2:4,ind) ;
end
clear(’ind’);
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Ao=VT2(3,1); #VT area after glottis
Am=VT2(3,end); Y%Area of mouth

%Computing the constant C_{iner}

integrandi=1./VT2(3,:);
integraali=(.5*integrandi(1)+.5*integrandi(end)+sum(integrandi(2:end-1)))*ds;
vakiol=rho*Ao*integraali;

%Computing the constant C_{VT}

integrandi=1./VT2(2,:)."4;
integraali=(.5*integrandi(1)+.5*integrandi(end)+sum(integrandi(2:end-1)))*ds;
vakio2=integraali;

clear(’integrandi’,’integraali’);

%Finally, the mass matrix M, stiffness matrix K and dissipative matrix R
%corresponding to the boundary condition at mouth

R=sparse(zeros (N+1,N+1));
R(N+1,N+1)=Am/2/ (rho*c*theta) ;

M=sparse(zeros (N+1,N+1));

M(1,1)=1/4%VT2(3,1)*VT2(4,1)+1/12*VT2(3,2) *VT2(4,2) ;

for k=2:N
M(k,k)=1/12%VT2(3,k-1)*VT2(4,k-1)+1/2*VT2(3,k) *VT2(4,k) +1/12*VT2(3,k+1) *VT2(4,k+1) ;
M(k,k-1)=1/12%VT2(3,k-1)*VT2(4,k-1)+1/12%VT2(3,k) *VT2(4,k) ;

end

M(N+1,N+1)=1/12*VT2(3,N) *VT2(4,N)+1/4*VT2(3,N+1) *VT2(4,N+1) ;

M(N+1,N)=1/12%VT2(3,N) *VT2(4,N)+1/12*VT2(3,N+1) *VT2(4,N+1) ;

M=M+M’-diag(diag(M));

M=ds/2/rho/c”~2*M;

M_inv=M"-1;

K=sparse(zeros (N+1,N+1));
K(1,1)=VT2(3,1)/2+VT2(3,2)/2;
for k=2:N
K(k,k)=VT2(3,k-1) /2+VT2(3,k) +VT2(3,k+1) /2;
K(k,k-1)=-VT2(3,k-1)/2-VT2(3,k) /2;
end
K(N+1,N+1)=VT2(3,N)/2+VT2(3,N+1)/2;
K(N+1,N)=-VT2(3,N)/2-VT2(3,N+1) /2;
K=K+K’-diag(diag(X));
K=1/2/ds*K;

%The matrix in the update equations are precomputed and -inverted here for
%the time step "step" in order to make computation faster.
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xici=full((step/2*K+2/step*rho*M+rho*R) ~-1);
xic=(-step/2*K+2/step*rho*M+rho*R) ;
A.3 File solver.m

%This file solves the equations of motion of the glottis, the
%glottal flow ODE and the Webster’s equation one step at a time.

op=zeros (NumIts+1,1); %1/0 glottis open or closed
op(1)=open;

dt=step;

Pm=zeros (NumIts+1,1); %Vector for pressure at mouth
Vm=Pm; %Vector for flow velocity at mouth
Pc=Pm; %Counter pressure (feedback)
bhat=zeros(N+1,1); %FEM-solver load vector

for n=1:Numlts
%EQUATIONS OF MOTION

Vi=Vout (n) *Ao/HO/width;  %Subglottal flow velocity
X=x(1:8,n); %Current state

7%RK4 steps

s1=ff (X,fb*.0817*Pc(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,
Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s2=ff (X+step/2*s1,fb*.0817*Pc(n) ,Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,
Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s3=£ff (X+step/2*s2,fb*.0817*Pc(n) ,Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,
Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

s4=ff (X+step*s3,fb*.0817*Pc(n),Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,
Y_110,Y_120,Y_210,Y_220,width,kerr,L,Kh,d);

Xnew=X+step/6* (s1+2*s2+2*s3+s4) ;

dt=step;

%Testing whether the glottis closes/opens at current step. If so,
%then interpolate as described in the report
if abs((Xnew(5)-Xnew(1)>d)-open)>.5
open=1-open;
[Xnew,dt]=interpol(x(:,n-1),[X;x(9,n)], [Xnew;x(9,n) +stepl);
end
op(n+1)=Xnew(5)-Xnew(1)>0;
x(1:8,n+1)=Xnew;
x(9,n+1)=x(9,n)+dt;



APPENDIX A. THE MATLAB-CODE 99

%GLOTTAL FLOW

if op(nt1l) > .5

Vout (n+1)=NewV (Xnew(5) -Xnew(1) ,Xnew(7) -Xnew(3) ,Vout (n) ,dt) ;
end
Vout (n+1)=(Vout (n+1)>0) *Vout (n+1) ; %No negative flow

#WEBSTER’S EQUATION

%Load vector for the FEM-solver
bhat (1)=dtx*.25xAo* (Vout (n) +Vout (n+1)) ;

%Crank-nicholson time discretization. The matrices in the update
hequations are precomputed in VTdata.m for steps with time step "step".
if dt<step
xi_old=xi;
xi=(dt/2*K+2/dt*rho*M+rho*R) \ ((-dt/2*K+2/dt*rho*M+rho*R) *xi_old+2*M*eta+bhat) ;
eta=2/dt*rho*(xi-xi_old)-eta;
else
xi_old=xi;
xi=xici*(xic*xi_old+2*M*eta+bhat) ;
eta=2/step*rho*(xi-xi_old)-eta;

end
Pm(n+1)=eta(N); %Pressure at mouth
Vm(n+1)=-(xi(N)-xi(N-1))/ds; %Flow velocity at mouth
Pc(n+l)=eta(1l); %Counter pressure
end
[0Q,flux]=suhde (op,Vout,x(9,:)); %Calculating the open quotient and
0Q hglottal net flux and printing them
flux

A.4 File fim

function f=ff(x,Pc,Vf,open,M1_inv,K1,B1,M2_inv,K2,B2,Y_110,Y_120,

Y_210,Y_220,width,kerr,L,Kh,d)

%This is the function f of the equation x’(t)=f(x(t)), which are the
%equations of motion of the glottis

gapl=x(5)-x(1);
gap2=x(7)-x(3);
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if open > .5

if gapi<0
error(’neglog’)
end

%Load force for open glottis
Fsum=-kerr*Vf~2/2/gapl/gap2;
Fl=kerr*Vf~2/2x(-1/gapl/(gap2-gapl)+1/ (gapl-gap2) ~2*log(gap2/gapl)) ;
F2=Fsum-F1;
F=[F1-Y_110"2/2/L*width*Pc;F2+Y_110"2/2/L*width*Pc] ;
else
%Load force for closed glottis
F=[(gap1<0)*Kh*(-gap1)~1.5-Y_110"2/2/L*width*Pc;Y_110"2/2/L*width*Pc];
end

dW1=M1_inv* (-B1*[x(2) ;x(4)]-K1*[x(1)-Y_110;x(3)-Y_120]-F);
dW2=M2_inv* (-B2*%[x(6) ;x(8)]-K2*[x(5)-Y_210;x(7)-Y_220]+F) ;

f=[x(2);dW1(1);x(4);dW1(2) ;x(6) ;dW2(1) ;x(8) ;dW2(2)];

A.5 File NewV.m
function new_v=NewV(gapl,gap2,v,dt)

%This function calculates the glottal flow by using a semi-implicit
%Euler-method

global vakiol vakio2 rho Ao Am width L mu

%Driving pressure (p_{sub} in the flow-0DE)
Plung=800;

%No flow if the glottis is closed
if gap1<=0

new_v=0;

return
end

CC=12*mu*Ao*0.8e-3/width/gapl~3+8*mu*xAo/pi*vakio?2;

%Semi-implicit Euler method
new_v=1/(1+CC*dt/vakiol) * (v+dt/vakiol* (Plung-.5*rho* (Ao/Am) ~2xv~2)) ;
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A.6 File interpol.m

function [new,dt]l=interpol(Xold,X,Xnew)
global d step;

gap0=Xo1d(5) -Xold (1) ;
gap1=X(5)-X(1);
gap2=Xnew(5) -Xnew (1) ;

%Interpolate the point of closure (stored in "root")
p=polyfit([Xold(9),X(9),Xnew(9)], [gap0-d,gapl-d,gap2-d],2);
r=roots(p);
root=r(1);
if and(r(2)>X(9),r(2)<Xnew(9))

root=r(2);
end

%"new" is the interpolated solution
new=zeros(8,1);

p=polyfit([X01d(9),X(9),Xnew(9)], [Xo1ld(1),X(1),Xnew(1)],2);
new(1)=polyval(p,root);

p=polyfit ([X01d(9),X(9),Xnew(9)], [Xold(2),X(2),Xnew(2)],2);
new(2)=polyval(p,root);

p=polyfit([Xo1ld(9),X(9),Xnew(9)], [X01d(3),X(3),Xnew(3)],2);
new(3)=polyval(p,root);

p=polyfit ([X01ld(9),X(9),Xnew(9)], [Xold(4),X(4),Xnew(4)],2);
new(4)=polyval(p,root);

p=polyfit([X01d(9),X(9),Xnew(9)], [X01d(5),X(5),Xnew(5)],2);
new(5)=polyval (p,root);

p=polyfit([Xold(9),X(9),Xnew(9)], [Xold(6),X(6),Xnew(6)],2);
new(6)=polyval (p,root);

p=polyfit([X01ld(9),X(9),Xnew(9)], [X01d(7),X(7),Xnew(7)],2);
new(7)=polyval (p,root);

p=polyfit([Xold(9),X(9),Xnew(9)], [X01ld(8),X(8),Xnew(8)],2);
new(8)=polyval(p,root);

dt=root-X(9);



