Articulating Finnish Vowels: Results from MRI and sound data

Pertti Palo, Daniel Aalto, Olli Aaltonen, Risto-Pekka Happonen, Jarmo Malinen, Jani Saunavaara and Martti Vainio*

*With affiliations too numerous to list here.

18.2.2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

- We are building a mathematical and numerical model of vowel production.
- For this we need geometrical (i.e. anatomical) data on vowel production.
- We also need simultaneously recorded audio data for validation of the model.
- We are currently assessing the reliability of the pilot data set.

ション ふゆ アメリア メリア しょうくの

 At the same time we are developing a systematic assessment kit for new data sets.

Data acquisition: The setup

Data acquisition: The protocol

Acoustic analysis of audio data

- The data consists of the 8 Finnish vowels.
- For each we have a clean sample from the beginning and end of the production.
- From a purely F1-F2 point of view, the most reliable samples are /e/, /y/ and /ø/.
- The acoustic analysis presents challenges.

イロト イポト イヨト イヨト

Perceptual analysis of audio data: Setting

- 200 ms samples were listened by three students of phonetics.
- They categorised the samples as vowels in a forced choice setting.
- They also rated the samples in prototypicality (epätyypillinen vs. tyypillinen) and nasality (epänasaalinen vs. nasaalinen).
- Prototypicality and nasality were rated on a visual analog scale.

ション ふゆ アメリア メリア しょうくの

Perceptual analysis of audio data: Preliminary results

- ► /a/, /e/, /y/ and /ø/ were correctly categorised in all cases.
- The rest had one error each either in beginning or end.
- /e/ got the highest prototypicality score for both begin and end samples.
- The current /e/ sample seems to be the most reliable of this set.

► For the others the results are nonconclusive.

MRI data

MRI is a tomographic technique: The data is acquired in slices (on the right) rather than as a projectional average (on the left).

イロト イヨト イヨト イ

MRI data: Asymmetry

Asymmetry is evident in most samples. For example, in the tongue position of the /y/ sample.

・ロト ・ 一下・ ・ ヨト

MRI data analysis: Measurements

Phoneme	/a/	/e/	/i/	/o/	/u/	/y/	/æ/	/ø/
Jaw opening (cm)	7.4	7.3	6.8	8.2	8.2	7.0	8.6	8.2
Smallest area (cm ²)	1.3	1.6	0.3	0.5	0.9	0.3	2.5	3.9

MRI data: Three dimensions

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Play videos.

Conclusions

- It is difficult to produce representative vowels in these conditions.
- The tongue is grooved regardless of the vowel.
- There is contact between the sides of the tongue and either the palate or the pharyngeal wall regardless of the vowel.

ション ふゆ く は マ く ほ マ く し マ

• There is asymmetry in the articulations.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ