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Introduction
Motivation

• Long term goal: Modelling human
speech production by combining
FEM and MRI from the Vocal
Tract (VT).

• Applications: Planning surgery that
affects speech. Speech synthesis.
General phonetics.

• Analysis of vowels: Formants vs.
VT resonances – solutions to
an eigenvalue problem.

• Assets: 1000+ pairs of VT MRI
and simultaneous voice recordings.



Introduction (2)
Vowels



Challenges

• The exterior space affects
formant positions.

• Exterior space is large
compared to the vocal tract.
Unnecessary computational
cost.

• Introducing new VT and
exterior space geometries.
Automation needed for
treating large datasets. Frequency (Hz)
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Geometries
Interior space coupled with the exterior
(blue) via an interface (red).

The interface is kept fixed so that
different interior geometries can be
introduced by Nitsche’s method.
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Resonances

• The resonant frequencies are
related to the eigenvalue problem:
Find (λ, u) ∈ C× V such that

−c2∆u = λ2u,

where V is the solution space.
• Realistic boundary conditions lead
to a quadratic eigenvalue problem.



Resonances (2)

• Simplification: u = 0 on ∂Ω (Dirichlet boundary condition)
• Find (λ, u) ∈ R× H1

0 (Ω) s.t.

∆u = λu.

• (Almost) non-physical, but easier to analyse.
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Method

Domain:

Ω := Ω1 ∪ Ω2 ∪ Γ

Ω1 := the vocal tract (interior domain)
Ω2 := the exterior domain

Γ := ∂Ω1 ∩ ∂Ω2, the interface

Ω2 Ω1

Γ

We can write the discretised problem as[
A11 A12
A21 A22

] [
x1
x2

]
= λ0

[
M11 M12
M21 M22

] [
x1
x2

]
.



Method (2)

[
A11 A12
A21 A22

] [
x1
x2

]
= λ0

[
M11 M12
M21 M22

] [
x1
x2

]
Define

B(λ) := −(A22 − λM22)−1(A21 − λM21).

B is a non-linear function of λ satisfying

x2 = B(λ0)x1.

Challenge: approximate the effect of B(λ) on an interval
[λmin, λmax ] (or several intervals)



Method (3)

B(λ) = −(A22 − λM22)−1(A21 − λM21).

• Low number of degrees-of-freedom on Γ, range(A21−λM21) is
contained in the subspace spanned by these DoF ’s for any λ.

• Oversampling in λ on an interval on every node of Γ:

yij = (A22 − λiM22)−1qj .

• Use PCA to reduce the dimension of the obtained vector space.
• Slight modifications required when using Nitsche’s method.



Method (4)

We get the following reduced eigenvalue problem:[
A11 A12Ũ

Ũ∗A21 Ũ∗A22Ũ

][
x1
α

]
= λ̃

[
M11 M12Ũ

Ũ∗M21 Ũ∗M22Ũ

][
x1
α

]
,

where x2 corresponds to Ũα.

Ũ does not depend on Ω1. Computed only once for a given exterior
domain.



Results

Using the mid-sagittal plane of a vocal
tract as Ω1, we compute

min
i
|λ− λ̃i |,

where λ is an eigenvalue of the full
problem, and λ̃i is an eigenvalue of the
reduced problem.



Results
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|λ− λ̃i |

Blue: 61 samples. Red: 301 samples.



Results

Ω2 DoF’s 3084
Interval [2, 5]
Samples 301
Reduced dim. 278
λ’s on the interval 200
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Results
Smaller interval

More reduction when using a smaller
interval:

Ω2 DoF’s 3084
Interval [2, 2.5]
Samples 51
Reduced dim. 90
λ’s on the interval 34 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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Results
Convergence
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Box

2D Vocal tract

Spherical domain

Norm of the error on the interval as a function of the reduced basis dimension.



Improvements & What’s next

• Better sampling strategy.
• Choosing a smarter basis on the interface.
• Performing SVD on every node, parallelisation.
• Analysis on convergence.
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