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Summary. Nitsche’s method is applied on an eigenvalue problem motivated by
speech modelling, enabling one to use non-matching meshes for the exterior acoustic
space and the vocal tract. As a result, resonance computations can be automatically
performed on multiple vocal tract geometries.

1 INTRODUCTION

Simulating resonant frequencies in vocal tract geometries extracted from MRI
data1 is an important step in human speech modelling. An ongoing challenge in such
simulations is including the exterior acoustic space accurately into the model. The
easiest option is to place a Dirichlet boundary condition at the mouth to emulate a
constant pressure environment. However, as the MRI machine is a rather constricted
space, it most likely has a strong effect on some of the resonances. This has lead to
using more detailed models of the exterior space2.

To validate the results of the resonance simulations, our research group has col-
lected a validation dataset consisting of audio recorded inside an MRI machine si-
multaneously with the 3D MRI measurements3. The validation dataset consists of
approximately 1000 different vocal tract geometries. Processing such a large amount
of different geometries automatically requires special techniques. The aim of this pa-
per is to present a method that allows one to easily exchange vocal tract and exterior
space geometries in the simulation.

Let Ω = Ω1 ∪ Ω2, where the distinct domains Ω1 and Ω2 correspond to the vocal
tract and the exterior domain of the acoustic space surrounding the head, respectively.
See Section 3 for examples of geometries that are actually used. In a typical simu-
lation, Ω2 remains unchanged while Ω1 varies between different vowels and patients.
The domains Ω1 and Ω2 are connected via an interface denoted by Γ = ∂Ω1 ∩ ∂Ω2.
We are interested in the following eigenvalue problem:

Find (λ, u) such that

−∆u = λu in Ω, u = 0 on ΓD, and
∂u

∂n
= 0 on ΓN , (1)

where ΓD and ΓN = ∂Ω \ ΓD denote the Dirichlet and Neumann boundaries, respec-
tively. This problem is a simplification of the actual acoustic problem involving more
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complicated boundary conditions. Using the sub-domains defined earlier, the problem
can be written as follows:

Find (λ, u1, u2) such that{
−∆ ui = λui in Ωi, ui = 0 on ΓD, and ∂ui

∂n = 0 on ΓN , i = 1, 2,

u1 = u2 and ∂u1

∂n = ∂u2

∂n , on Γ.
(2)

In order to easily exchange different interior geometries, we discretise the above system
separately with respect to the domains Ω1 and Ω2, resulting in triangulations T1 and
T2, respectively. Nitsche’s method is then used to enforce conditions stated in the
second equation in (2), i.e, the continuity conditions over the interface Γ. This allows
us to use non-matching grids, which considerably simplifies the mesh generation for
the domains.

To prepare an extracted vocal tract geometry for use, the space between the edge
of the extracted geometry’s mouth area and the edge of the spherical surface of the
interface is triangulated. Processed geometries can be seen in Figure 2.

2 NITSCHE’S METHOD

In this section, we shortly review Nitsche’s method and some aspects related to its
implementation. For a detailed mathematical treatment, see Becker et al.4. Applying
Nitsche’s method onto equation (1) leads to the following problem:
Find (λ, u) ∈ (R+, V ) such that

a(u, v) = λb(u, v) ∀v ∈ V, (3)

where
V :=

{
u ∈ L2(Ω) | u|Ωi

∈ H1(Ωi), i = 1, 2, u = 0 on ΓD

}
. (4)

The forms a(·, ·) and b(·, ·) are defined as b(u, v) = (u, v)Ω, and

a(u, v) =

2∑
i=1

(∇u,∇v)Ωi
−
〈{

∂u

∂n

}
, JvK

〉
Γ

−
〈

JuK,
{
∂v

∂n

}〉
Γ

+ α 〈JuK, JvK〉Γ . (5)

Here {u} is the average, JuK is the jump of u over the interface Γ, and α is a mesh
size dependent constant.

Expanding the boundary terms in (5) leads to integrals of the form∫
Γ

uivj dA, i, j = 1, 2. (6)

Since the finite element meshes T1 and T2 are allowed to be non-matching, defining
the interface Γ is non-trivial. In the following, we consider tetrahedral meshes Ti,
and denote the approximate surface triangulations containing the interface Γ as Bi,
i = 1, 2.

In our application the interface has the same shape independent of the exterior
domain Ω2. To simplify the computations of the integrals we have chosen an interface
Γ that lies on a spherical surface. The parametrization of the interface is non-trivial
due to the singular points at the poles of the sphere, as well as the periodicity. We
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split the sphere into four charts and use different parametrization for each chart in
order to avoid these problems. We denote the number of nodes in the triangulation
Bi with NΓ

i . For simplicity, we consider only one chart in the following description.
Each boundary triangle is identified with a triangle in the parametric space de-

fined by the related chart. Hence, there exists a triangulation Bpi of the parametric
space corresponding to Bi. When the two meshes are not conforming, we generate a
triangular mesh Bp for the parametric space such that Bp1 ⊂ Bp and Bp2 ⊂ Bp. An
example of constructing the mesh Bp is shown in Figure 1.

Figure 1: Two non-matching meshes Bp1 and Bp2 , and a conforming mesh Bp.

On each chart, we identify the nodes of each triangle from the mesh Bi with a
parameter tin, where n = 1, . . . , NΓ

i . Let K ∈ Bi be a surface triangle with nodes
n1, n2, n3. We define a mapping ri,K : K → K ′ ∈ Bp,

ri,K(x) =

3∑
j=1

tinj
ϕj(x), (7)

where ϕj are the linear basis functions on K. The integrals in equation (6) can now
be computed as follows:∫

Γ

uivj dA =
∑

K∈Bp

∫
K

ui(r
−1
i,Ki

(x))vj(r
−1
j,Kj

(x)) dx. (8)

Here Ki ∈ Bpi is such that K ⊂ Ki, i = 1, 2. The normal is chosen to be the normal
of the element K.

3 RESULTS

Two different automatically extracted vocal tract geometries from MRI-sequences
were used for Ω1. To simulate the acoustic environment inside an MRI machine,
a cylindrical shape with the dimensions of a head coil was used for Ω2. Neumann
boundary condition was set everywhere except on the caps of the cylinder, where
Dirichlet boundary condition was used. Examples of acquired pressure distributions
are shown in Figure 2. The illustrated geometries are approximately symmetrical
with respect to the cutting plane. The spherical interface Γ is also shown in the
visualisations.

4 CONCLUSIONS

We note that the model works well given the problem setting. When implement-
ing this method, a lot of care is needed when it comes to handling multiple charts.
However, with a fixed interface this needs to be done only once, and the convenience
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Figure 2: Scaled pressure distributions of the second and fourth modes (left/right)
for two different vowels (top/bottom). We note that the pressure on the interface is
nearly constant in each case.

of being able to easily exchange geometries makes up for the inital inconvenience.
The next steps include setting a more complicated boundary condition at the glottis
as well as incorporating a dimension reduction for the exterior acoustic space5.
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