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Tässa työssä esitetään menetelmä ihmisen ääntöväylää kuvaavien geometrioiden
purkamiseksi magneettikuvauslaitteella kerätystä datasta. Lisäksi purettujen
ääntöväylägeometrioiden akustiikkaa mallinnetaan laskennallisella mallilla.

Käytetty data koostuu koehenkilöstä vokaaliäännön aikana otetuista magneettiku-
vista. Ääntöväylän magneettikuvaus ei ole suoraviivaista, koska magneettiku-
vauskone ei erota luukudosta ilmasta siinä olevien vetyatomien vähäisen määrän
takia. Tästä johtuen hampaat sekä ylä- ja alaleuka yhdistyvät ääntöväylän
ilmapatsaaseen magneettikuvassa. Tässä työssä kehitetään menetelmä, jota
voidaan käyttää näiden ylimääräisten artefaktien poistamiseen magneettiku-
vasta. Menetelmä perustuu erikseen ylä- ja alaleualle rakennettujen mallien
kohdentamiseen otetun MRI-kuvan kanssa. Kohdentamisesta saatua informaa-
tiota käytetään poistamaan leuoista johtuvat artefaktit. Menetelmällä pyritään
minimoimaan ääntöväylän purkamiseen tarvittavaa manuaalista työtä, mikä on
välttämätöntä käytössä olevan tutkimusdatan suuren määrän takia.

Työssä kuvattua metodia käytetään purkamaan ääntöväylägeometrioita suomen
kielen vokaaleille. Ääntöväylägeometrioiden akustisia resonanssiominaisuuksia
tutkitaan kahdella akustisella mallilla. Malleina käytetään kolmiulotteista
Helmholtz-yhtälöä ja yksiulotteista Websterin yhtälöön perustuvaa resonanssi-
mallia. Resonansseja myös verrataan magneettikuvauksen aikana samanaikaisesti
nauhoitetuista ääninäytteistä purettuihin formantteihin.
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This work presents a method for extracting vocal tract (VT) geometries from MRI
data. Computational models are used to model VT acoustics in the geometries
obtained.

The data consists of MR images of a single test subject pronouncing Finnish vowels.
MR imaging presents a challenge for VT extraction since osseous tissue, such as
the maxillae and mandible, are indistinguishable from air in the image data. This
limitation has been overcome by producing external models for the maxillae and
mandible, and registering them with the image data. The registration information
can then be used to mask the maxillae and mandible in the original data. The
presented method aims to extract the VT geometry by minimizing required manual
work, which is necessary due to large number of research data.

The described method is used to automatically extract geometries for Finnish
vowels. The extracted geometries are used to computationally model VT
acoustic resonance properties during pronounciation of vowels. For this purpose,
Helmholtz and Webster resonance models are used. Computed resonances are also
compared to formants that have been extracted from sound recordings carried
out simultaneously with the MR imaging.
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Chapter 1

Introduction

The motivation for this work stems from mathematical modelling of human speech,
see Hannukainen et al. (2007); Aalto et al. (2015b). In this work, methods for
automatically extracting the human vocal tract from magnetic resonance (MR)
images are presented. The obtained anatomical geometries are then used in a
computational study of the acoustic properties of the vocal tract.

1.1 Human speech production

A schematic diagram of the human vocal mechanism is shown in Figure 1.1. The
lungs produce an airflow that passes through the trachea and the vocal tract (VT).
The air will exit the VT through the mouth opening or the nasal tract, both of
which can independently be open or closed depending on the situation. The nasal
tract begins at the velum and terminates at the nostrils. Airflow through the nasal
tract is regulated by the velum opening.

The trachea is separated from the VT by the larynx which is a narrowing containing
the vocal folds. The orifice of the vocal folds is called the glottis. In ordinary
phonation, the accelerating airflow through the glottis – according to Bernoulli’s
principle – causes a pressure drop, which then exerts an aerodynamic force that
pulls the vocal folds together and closes the glottis. The resulting compression
of the vocal fold tissues and the pressure difference between the trachea and the
VT open the glottis again. Thus, the vocal folds vibrate, acting like a valve that
periodically opens and closes the glottis.

The oscillation may start after the airflow exceeds a limit known as the phonation
threshold. The periodic opening and closing of the glottis produces flow pulses
that pass through the vocal tract. These flow pulses can be considered as an

1
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Figure 1.1: Schematic diagram of the human voice production mechanism
(Flanagan, 1972).

acoustic sound signal that is filtered by the vocal tract before it is transmitted to
the exterior space through the mouth and/or nostrils.

The geometry, i.e., the shape, of the VT varies during phonation, allowing different
kinds of speech sounds to be produced. In sustained vowel production, the vocal
tract geometry remains more or less static. The VT is usually open at every point
and the sound is mainly transmitted through the mouth.

Different vowels can be classified by the acoustic resonance frequencies of the
corresponding VT geometry. In phonetics, these resonance frequencies are often
referred to as formant frequencies ; the ambiguities between different but related
definitions are discussed later in this work. Other speech sounds, such as fricatives
and consonants, involve temporarily constricting or closing the VT during phona-
tion, in which case the primary sound source is not the glottis. This complicates
modelling phonation significantly since the geometry is inherently time dependent.
(Flanagan, 1972)

Only static VT geometries corresponding to Finnish vowels are examined in this
work.
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Figure 1.2: Schematic diagram of a model for vowel production.

1.2 Modelling speech production

Speech production models are used in telephony, speech synthesis, and increasingly
more often in medical applications (see Svancara and Horacek, 2006; Flanagan,
1972). Increased computational capacity has made it possible to model the physics
of speech production more accurately. Speech synthesis from true VT geometries is
becoming a possibility. The precise relation between the vocal tract geometry and
the produced speech sound is especially relevant in medical applications. In speech
synthesis, only the perceived quality of the produced signal matters and simplified
acoustic models are adequate. However, the human speech production system as a
whole is very complicated. Simplifications will have to be made even if most parts
of the system could be accurately modelled. For example, the neuronal control,
and thus neural diseases, are known to be closely related to speech production, but
the mechanisms are not yet very well understood (Dromey et al., 1995; Skodda
et al., 2011).

Most speech production models are based on the Source-Filter theory that has been
attributed to Fant (1971), even though some of the ideas can be found in earlier
work by von Helmholtz (1912). In the Source-Filter theory, the source produces
a signal that is then filtered. The source is usually assumed to be independent of
the filter, and the filter is assumed to be independent of the termination. When
modelling vowel production, the glottis, the VT, and the mouth are the source,
the filter, and the termination, respectively. If the filter is assumed to be linear
and time invariant, inverse filtering techniques can be used to estimate the source
signal from a measured output (see, e.g Fant, 1971; Alku et al., 2006).
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Figure 1.2 shows a schematic diagram of the speech model treated in this work.
A mechanical model for producing the glottis signal has been presented by Aalto
(2009) and refined by Murtola (2014). The glottis model uses Webster’s-resonator-
based VT model and a subglottal model to produce a counterpressure for the glottis
model. However, Webster’s resonator is not able to capture, e.g., cross-modes at
frequencies above 4 kHz, which can be done using a full 3D acoustic model of the
VT.

All speech models take the VT configuration into account in some way. The phys-
ically accurate models used in this work depend on a high quality representation
of the VT geometry in 3D. The main part of this work focuses on constructing re-
liable methods for extracting VT geometries of different vowel configurations from
medical images of variable quality.

In addition to the speech production mechanisms, the exterior space plays a signif-
icant role in forming the final acoustic signal. At least for time-dependent models,
constructing a physically fully accurate exterior space model is computationally
unattainable. However, a separate, simplified exterior space model can be used
(see Vampola et al., 2013; Hannukainen et al., 2014). Modelling the exterior space
is outside the scope of this work.

1.3 Medical imaging

Since the introduction of the X-ray machine by Wilhelm Röntgen in 1895, medical
imaging has grown to be a routine part of medicine. Medical imaging technology
has improved considerably since then, and nowadays there are various imaging
methods such as Magnetic Resonance Imaging (MRI), Computed Tomography
(CT), and Ultrasound. Different imaging methods rely on different physical phe-
nomena, and they can also be used to capture non-anatomical information. The
data for this work has been obtained using MRI. Compared to CT scanning, the
MRI has the additional benefit of not using ionizing radiation, which would —
due to research-ethical reasons related to test subject health — limit the amount
of images that can be taken.

Raw medical images are usually analyzed by trained medical professionals. Image
processing and analysis techniques can, however, be applied to aid the analysis.
Computational models of organs can also be used together with image analysis
software to give additional information to a user.

Medical image analysis and medical image computing combine many fields, in-
cluding computer vision, data science, physics, and mathematics. As presented in
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Angenent et al. (2006), image analysis usually tackles four key problems:

Segmentation - automated methods to locate relevant anatomical objects from
images,

Registration - methods to align multiple datasets that usually present 2D or 3D
images,

Visualization - technology to give a user the possibility to control the process and
inspect the results,

Simulation - models that can be used in planning procedures and simulation of
treatment results.

In general, all medical image processing applications require custom procedures to
cope with specific situations. In this work, all of the problems above have been
considered, maintaining focus on the computational modelling of human speech.
Specifically, we have searched for methods to cope with the dental structures miss-
ing from the MR image due to the poor contrast between osseous tissue and air in
MRI. The missing information can be added by registering external dental models
with the VT models that have been extracted from the MRI data.

Extracted geometric models can be used in computational simulations of the acous-
tics and fluid mechanics of the VT anatomy. Figure 1.3 illustrates pressure dis-
tribution on the surface of the VT – for a single resonance frequency – during
sustained pronunciation of a single vowel. A 3D print of the VT is also shown in
Figure 1.3.

Figure 1.3: A surface mode of a pressure distribution for the 5th resonance of
vowel [e] and a 3D print of the geometry for vowel [a].
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1.4 Outline of this work

This work consists of three main parts. First, physical models for VT acoustics
are presented in Chapter 2. These models are part of the full phonation model
discussed in Section 1.2. The acoustic wave equation is initially derived from first
principles, and the Helmholtz equation and the generalized Webster’s equation,
as shown in Lukkari and Malinen (2013), are discussed. Both of these equations
can be derived from the wave equation. The Helmholtz equation is the time-
independent version of the wave equation whereas Webster’s equation is a sim-
plification that approximates the 3D wave equation in a tubular domain. These
models are later used in Chapter 5 to computationally model VT acoustics.

Second, an introduction to the methods and algorithms used for feature extraction
and registration is given in Chapter 3. These tools are then used in Chapter 4
to build an algorithm for extracting a 3D geometric representation of the VT
from MR images. This VT geometry is required for computations that use the
models presented in Chapter 2. The goal has been to design algorithms and
software that can be used to extract VT geometries from MR images without
extensive manual work. This is important since statistically relevant studies in
speech medicine will require thousands of images to be processed. MRI does
not distinguish osseous tissue from air, and thus the main part of the algorithm
makes use of 3D image registration techniques to add missing information to the
anatomical VT model.

Third, the presented mathematical models and the extracted geometries are used
in Chapter 5 to investigate the acoustics of the VT. Resonances of the VT geometry
for Finnish vowels are obtained computationally using the Finite Element Method
(FEM) for solving the models presented in Chapter 2. The computed resonances
are compared with formant frequencies that have been extracted from sound sam-
ples recorded simultaneously to MR imaging. All data for the experiments has
been obtained as described in Aalto et al. (2011a).

In addition to validating the extracted geometries by comparing the computation-
ally obtained results to the recorded sound samples, we are interested in how the
Helmholtz model compares to the time-independent Webster’s horn model in dif-
ferent VT geometries. These two models, although mathematically rather simple,
already provide interesting insights into VT acoustics. The obtained results could
help understand the effects of oral and maxillofacial surgeries to speech.



Chapter 2

Differential equations for acoustic

modelling

Next, we consider the mathematical background of the models used in the ex-
perimental part of this work. The derivation of the 3D acoustic wave equation
will be outlined. Simplified versions of the full wave equation, i.e., the Helmholtz
equation and the time-harmonic Webster’s equation, will also be introduced. The
Helmholtz equation is obtained by assuming the solution of the wave equation is
time-harmonic. The derivation of the generalized Webster’s equation is more in-
volved (Lukkari and Malinen, 2013; Aalto et al., 2015a; Lukkari and Malinen,
2015). Webster’s equation is an essential part of the glottis model shown in
Fig. 1.2.

2.1 Wave equation and Helmholtz equation

The wave equation is a second-order hyperbolic partial differential equation that
governs the propagation of waves in fluid. The fluid can be considered as a con-
tinuous medium specified by the mass density ρ(x, t), the velocity v(x, t), and
the pressure p(x, t). To derive the wave equation, we first present fundamental
fluid mechanical equations and then impose further restrictions to capture the
compressional characteristic of waves in fluids.

Fundamental equations in fluid mechanics

Euler’s equation: Taking into account the forces caused by the pressure p and
an external force fext – which can be zero –, one can arrive at Newton’s second law

7
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for an ideal fluid, known as Euler’s equation

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇p+ fext, (2.1)

Conservation of mass: Assuming mass conservation one can obtain the conti-
nuity equation

∂ρ

∂t
+∇ · (ρv) = 0, (2.2)

which is a very general conservation law seen in many other applications as well.

Conservation of energy: If the underlying thermodynamic process is assumed
locally isentropic, i.e., reversible, then one can relate the integral energy ǫ of a
small enough volume element to the work done to the element using the following
definition

ǫ(s, ρ) =

∫

ρ

p(s, ρ′)

ρ′2
dρ′, (2.3)

where s is the entropy per unit mass. Here the volume elements are assumed to be
small enough for p, s, ρ, and ǫ to be independent of position, i.e., there is a local
thermodynamic equilibrium. Differentiating Eq. (2.3) we obtain the isentropic
relation

∂ǫ

∂t
=

(
∂ǫ

∂ρ

)

s

∂ρ

∂t
=

p

ρ2
∂ρ

∂t
. (2.4)

In addition, we can define the enthalpy per unit mass as ǫ + p
ρ
which has the

property

∇

(

ǫ+
p

ρ

)

=
1

ρ
∇p (2.5)

Bernoulli’s theorem: Combining the vector identity

(v · ∇)v = ∇(
1

2
|v|2)− v × (∇× v)

with Euler’s equation (2.1) and the property (2.5) results in Bernoullis’s theorem
for isentropic irrotational flow

ǫ+
p

ρ
+ U +

1

2
v2 −

∂Φ

∂t
= 0, (2.6)

where we have used the fact that for an irrotational flow ∇× v = 0.
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Wave equation

To derive the acoustic wave equation, we consider a stationary fluid at constant
density ρ0 and pressure p0. We then define the acoustic waves in the fluid as small
perturbations in density and pressure. This gives

ρ = ρ0 + ρ′ v = v0 + v′ p = p0 + p′, (2.7)

where ρ′, v′, and p′ present small first-order perturbations in the corresponding
quantities, and ρ0, p0, and v0 are constants. During the derivation, the fluid is
considered to be at rest and thus v0 = 0 and v = v′. We continue by linearizing
Euler’s equation Eq.(2.1) respect to the perturbations to obtain

∂v′

∂t
= −

1

ρ0
∇p′. (2.8)

Doing the same for the continuity equation Eq. (2.2) gives

1

ρ0

∂ρ′

∂t
+∇ · v′ = 0. (2.9)

We further consider the process to be isentropic and thus reversible. There exists
an isentropic equation of state for pressure p = p(s, ρ) where s is entropy and ρ is
density. Linearization of this equation of state yields

p′ = p(s, ρ0 + ρ′)− p(s, ρ0) ≈

(
∂p

∂ρ

)

s

ρ′. (2.10)

Now defining the constant c > 0 as c2 =
(

∂p
∂ρ

)

s
we obtain the identity

p′ = c2ρ′. (2.11)

Next we assume that the flow is irrotational (∇ × v = 0) and it has a velocity
potential Φ(x, t) with

v′ = −∇Φ. (2.12)

After some manipulation, the first-order expansion of the isentropic Bernoulli’s
equation (2.6) and the relation ∂ǫ

∂ρ
= p

ρ2
from (2.4) yields

p′ = ρ0
∂Φ

∂t
⇔ c2ρ′ = ρ0

∂Φ

∂t
(2.13)
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When Eq. (2.12) and the time derivative of Eq. (2.13) is plugged to the linearized
continuity equation (2.9), we obtain the wave equation for the velocity potential

∇2Φ =
1

c2
∂2Φ

∂t2
(2.14)

From Eq. (2.13) we also see that there is a direct relationship between the velocity
potential Φ and the pressure p, thus solving the velocity potential also gives us the
acoustic pressure distribution inside the volume.

The Helmholtz equation

If the velocity potential in equation (2.14) is assumed to be time-harmonic, i.e.,
Φλ(r, t) = ReΦλ(r)e

−iλt, then we obtain the Helmholtz equation

∇2Φλ(r) +
λ2

c2
Φλ(r) = 0. (2.15)

This is an eigenvalue problem that is mathematically considerably easier than the
wave equation. Solutions of the Helmholtz equation correspond to the resonance
frequencies of the full wave equation.

2.2 Webster’s equation

Webster’s equation is a simplification of the wave equation (2.14). It models waves
in a tubular domain Ω ⊂ R

3 and assumes that the waves move mainly in the
longitudinal direction of the tube. This is done by considering only the averages
of the solution in tube cross-sections. A complete derivation of the generalized
Webster’s equation can be found from Lukkari and Malinen (2013); Aalto et al.
(2015a); Lukkari and Malinen (2015). Only an overview of the equation will be
presented here.

The tubular domain Ω is assumed to have a centerline presented by a smooth curve
γ(s) parametrized by arc length. The curvature of the centerline at a point γ(s)
is defined to be κ(s) = ‖γ′′(s)‖. We can fix an orthonormal coordinate system,
known as the Frenet frame, to every point of γ. The unit vectors of the coordinate
system are defined by

t(s) = γ′(s), n(s) =
t′(s)

κ(s)
and b(s) = t(s)× n(s).
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These vectors are called the tangent vector, the normal vector and the binormal
vector, respectively. In the derivation of Webster’s equation it is assumed that
κ(s) > 0, which results in a right-handed coordinate system at all points of the
curve.

The domain Ω can be described using cross-sections Γ(s). The cross section Γ(s),
at a point γ(s), is perpendicular to t(s), i.e., the tangent is a normal for the cross-
section. The boundary of Ω consists of the ends of the tube Γ(0) and Γ(L) and
the tube wall Γ = ∪s∈[0,L]∂Γ(s). In computations and in the derivation each Γ(s)
is assumed to be a circular disk, the corresponding hydrodynamic radius of which
is denoted by R(s).

If Φ is assumed to be the solution of (2.14), the average solution can be written
as

Φ(s, t) =
1

A(s)

∫

Γ(s)

ΦdA, (2.16)

where A(s) = πR(s)2. After a lengthy derivation in Lukkari and Malinen (2013),
Webster’s equation can be written as

1

c2Σ(s)2
∂2Φ

∂t2
+

2παW (s)

A(s)

∂Φ

∂t
−

1

A(s)

∂

∂s

(

A(s)
∂Φ

∂s

)

= 0 (2.17)

where α is the dissipation coefficient at the VT walls, and the sound speed correc-
tion factor, Σ(s), and the stretching factor, W (s), are defined as

Σ(s) =
(
1 +

1

4
η2(s)

)−1/2
, with η(s) = R(s)κ(s), and (2.18)

W (s) = R(s)
√

R′(s)2 + (κ(s)− 1)2. (2.19)

.

As with the Helmholtz equation, making the time-harmonic assumption Φλ(s, t) =
ReΦλ(r)e

−iλt yields the time-harmonic Webster’s equation

λ2

c2
1

Σ(s)2
Φλ + λ

2παW (s)

A(s)
Φλ −

1

A(s)

∂

∂s

(

A(s)
∂Φλ

∂s

)

= 0. (2.20)

The main difference between Eq. (2.15) and Eq. (2.20) is that Webster’s equation
only captures resonances in the longitudinal direction. If the cross-sectional area
of the tube is large enough, there can be mixed resonances, i.e., resonances having
transversal components. The Helmholtz equation will also capture the transversal
resonances.
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2.3 Boundary conditions

All of the models in Sections 2.1 and 2.2 require boundary conditions to attain a
unique solution. In this work, we will only be using the Helmholtz equation and
the time-harmonic version of Webster’s equation. Thus, none of the problems will
be time-dependent.

We define Ω to be the VT air volume. The boundary ∂Ω = Γg ∪ Γw ∪ Γm consists
of the glottis boundary Γg, the VT wall boundary Γw, and the mouth boundary
Γm.

First, at the glottis boundary we use the radiating Robin boundary condition of
the form

λΦ + c
∂Φ

∂ν
= 0, at Γg. (2.21)

This condition presents the signal coming from the glottis, and its time variant
form is ∂Φ

∂t
+ c∂Φ

∂ν
. Second, at the VT walls we have the boundary condition

αλΦ +
∂Φ

∂ν
= 0, at Γw. (2.22)

This boundary condition accounts for the energy dissipation to the tissue wall.
The boundary condition is used in the derivation of Webster’s equation (Eq. 2.20)
and it is not explicitly defined when numerically solving it.

Finally, at the mouth boundary we use a Dirichlet boundary condition

Φ = 0, at Γm. (2.23)

This boundary condition regards the mouth boundary as an idealised open end of
an acoustic tube. As such, it is a very radical simplification of the exterior space
acoustics, the efficient modelling of which is a very complicated subject.
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Segmentation and registration

methods

As mentioned in Chapter 1, image analysis tries to tackle two basic problems,
namely segmentation and registration. Segmentation usually means dividing the
dataset (e.g., the image) to multiple segments and/or using feature extraction
methods to identify relevant parts of the dataset. Registration methods find cor-
respondences between two datasets, which might be obtained using different meth-
ods and/or at different times. The registration information can be used, e.g., to aid
segmentation or to combine multiple datasets. This chapter gives an introduction
to the feature extraction and registration methods used in this work.

3.1 Representation of 3D data

Algorithms presented in this chapter treat three different presentations of 3D data.
These three presentations are the voxel image, point cloud, and a triangular mesh.
Naturally, conversions between these presentations can be carried out, but they
do not necessarily preserve all information.

In general, the image data can be thought of as a mapping I : D → C, where I
maps a given point x ∈ D to a color I(x) ∈ C. The color space can consist of one or
multiple color values, or other data. In this chapter – unless otherwise mentioned
– all image data is considered to be 3D with one-dimensional color space, i.e.,
grayscale. In image analysis, the spaces D and C and the mapping I are usually
considered to be continuous. However, the most common way to present images
in computer memory is an array of voxels (pixels in 2D) consisting of a regular 3D
lattice of points with their corresponding color values. This presentation is called
a voxel image.

13
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Whereas a voxel image represents the whole space, individual objects or features in
the space can be presented using a 3D triangle mesh consisting of a set of triangles
in 3D space. Most applications impose additional requirements for the mesh.
For example, tetrahedral mesh generation requires the mesh to be interconnected,
closed, and a manifold. The last condition means that the neighborhood of every
point resembles an euclidean space, i.e., the surface does not fold through itself.
A triangular mesh consists of a set of vertices and a triangulation defined on
them.

Point clouds are 3D sets of points, each of which usually have additional infor-
mation, e.g., a color value, associated with them. Thus a voxel image can also
be presented as a point cloud. However, there is a semantic distinction as a voxel
image aims to represent every point in the whole space whereas the point cloud
usually consist of – not necessarily regularly spaced – points that represent impor-
tant features or measurements.

It is possible to turn a point cloud representing a surface to a triangle mesh by
approximating surface normals and triangulating the points. A triangle mesh can
trivially be converted into a point cloud by ignoring the triangulation information,
which constraints what points can be considered neighbors. Point clouds and
triangle meshes can be converted into voxel images by choosing the values of the
voxels depending on how the mesh or point cloud would intersect them. It is
possible to lose information in some of these transformations.

In the context of this work, medical imaging devices are the most typical source
of voxel images. Triangulations and point clouds are usually obtained by using
physical measurement devices or by extracting them from (voxel) image data.
Applications that use 3D scanning techniques usually rely heavily on point cloud
processing.

Data structures and basic problems

Practical implementations of image processing and feature extraction algorithms
rely on an ability to efficiently obtain basic information about the underlying data.
Thus it is important to choose data structures that support the implementation
of efficient algorithms.

A voxel image of dimensions m × n × k has mnk elements and is usually stored
in computer memory as a continuous array. This representation is a basic data
structure in many programming languages, and it is widely used, e.g., for dense
matrices. It is possible to access and modify voxel values in constant time. Modi-
fication of the dimensions, i.e., adding or removing voxels, might be expensive but
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it is rarely required in applications.

The presentation of point clouds needs careful consideration. As the points are
not regularly spaced, the data structure needs to support efficient search of points
according to their spatial coordinates. Most point cloud algorithms also rely heav-
ily on finding nearest neighbors of points. The k nearest neighbors of a point are
called the k-neighborhood of the point. A visualization of the k-neighborhood can
be seen in Figure 3.3a.

Point clouds are usually stored in k-d trees or octrees. A k-d tree is a binary
tree structure where every node stores a k-dimensional point. Each non-leaf node
defines a hyperplane that partitions the space into two subspaces respect to some of
the k dimensions. An octree is a tree where each node has exactly eight children.
The octree stores the points by recursively subdividing the 3D space into eight
octants, corresponding to the eight children. Both of these data structures can be
used to search for points and nearest neighbors in O(log n) time. As mentioned
before, triangle meshes are essentially point clouds with associated neighbouring
information.

3.2 Algorithms for feature extraction

Feature extraction aims to detect and/or isolate predetermined shapes or objects
from image data. For example, different forms of edge detection, isosurface extrac-
tion, and template matching can all be considered to be forms of feature extraction.
This section gives a general overview of the Marching Cubes algorithm, which is
a well known method for isosurface extraction by Lorensen and Cline (1987). We
also present parametric deformable models, which are also used to isolate regions
of an image.

The Marching Cubes algorithm

The Marching Cubes algorithm is used to extract isosurfaces from image data. An
isosurface is a surface inside the image corresponding to a pre-defined color of the
image. For example, using the notation adopted earlier, the isosurface of a gray
level l in a grayscale image corresponds to the set S = {x ∈ D|I(x) = l}.

When I is a continuous function, the resulting surface will be closed. Naturally, this
is not actually true for the image data in computer memory. The Marching Cubes
algorithm constructs a polygonal surface from a scalar field that has been sampled
on a regular 2D or 3D grid. The algorithm was first proposed by Lorensen and Cline
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Figure 3.1: Cases for marching cubes (Antiga, 2002).

(1987). Many improvements and variations of the algorithm have been proposed,
but new algorithms are still being compared against the original Marching Cubes
algorithm.

The basic idea of the algorithm is to approximate the scalar field as a continuous
function by linearly interpolating between neighboring vertices. In order to do
this efficiently, it is noted that, inside an imaginary cube formed by 8 neighboring
points in the scalar grid, there is only a limited number of possible triangulations
which can be tabulated beforehand.

If the 8 grid points are labeled as being above or below the threshold value the cube
vertices have 28 = 256 different combinations, the number of which can be reduced
to 15 when rotational and reflective symmetries are taken into account. Figure 3.1
shows a predetermined way to triangulate the volume inside the cube for each of
these configurations. Some of the cases have complementary cases as there are
many ways to triangulate the volume. These cases are shown in Figure 3.2. The
complementary cases have to be correctly selected, as a wrong choice can change
surface topology, resulting in holes. The exact location of the triangle vertices at
the cube edge is determined by linearly interpolating between the vertex scalar
values.
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10c 12c 13c

Figure 3.2: Complementary cases for marching cubes (Antiga, 2002).

Parametric deformable models

One problem with isosurface extraction is that it is not really based on image
features as it just simply extracts a surface corresponding to a given color value.
To take image features in account we can use parametric deformable models to
extract features from the image.

Parametric deformable models are models, e.g., curves or surfaces, that evolve
in the image space. The deformations of the models are described from the La-
grangian point of view. Compared to the isosurface extraction this approach copes
better with noise, artefacts, and low contrast in the original images. All of the
parametric deformable models used in this work have been implemented in the
VMTK library. Thus only a general overview will be given here.

Snakes

A snake is a closed curve used in 2D shape detection. The curve can be described
in the Lagrangian frame as a time dependent parametrised function

C : U
︸︷︷︸

s

× R
+

︸︷︷︸

t

−→ R
2.

This curve then evolves in time so that it eventually minimizes the energy func-
tional

Esnake(C) = Esmooth(C) + Eimage(C), (3.1)

where

Esmooth(C) =

∫ 1

0

w1|Cs|
2 + w2|Css|

2 ds

and

Eimage(C) =

∫ 1

0

w3P (s) ds,
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which is the “driving energy” that takes image features into account using the
scalar potential P (e.g. P (x) = −|∇I(x)|).

The energy functional (3.1) can be minimized using gradient descent minimization,
i.e.,

Ct+1 = Ct − γ∇Esnake(C).

In practice, the curve C is presented as a set of discrete points pi and its energy
functional can be written in terms of the points as

E∗
snake ≈

∑

Esnake(pi),

after which the gradient descent iteration for the discrete points pi describing the
curve C becomes

pi,t+1 = pi,t + γ∇E∗
snake(pi,t).

This is the simplest and most straightforward way to implement the algorithm.
The derivatives can be approximated using finite differences. The initial curve can
be put inside or outside the feature to be extracted, and the parameters will be
chosen so that the curve either expands or shrinks depending on the position of
the initial curve.

In theory, it is possible to do 3D feature extraction by combining the results of
multiple extracted 2D features. However, with complicated shapes such as the
VT, problems are to be expected. For example, if the alignment of the 2D slice of
the 3D image is not consistent with the medial axis of the object to be extracted
(which may not be known), it might be difficult to combine the extracted features
reliably to form a 3D image. This is further discussed later in Section 4.3.

Balloons

A balloon is a closed 3D surface that is used similarly to snakes. Moving from a
2D model to a 3D one complicates the model somewhat. For example, if a surface
is shrunk according to its curvature, it doesn’t necessarily evolve into a sphere
before collapsing to one point, whereas a 2D curve always evolves into a circle
when shrinking according to its curvature. For this reason, balloons are usually
only inflated instead of shrinking them.

The parametric deformable surface is defined by a function

S : U
︸︷︷︸

r

× U
︸︷︷︸

s

× R
+

︸︷︷︸

t

−→ R
3.
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It is also assumed that for the partial derivatives |Sr| = |Ss| = 1 and Sr · Ss = 0.
The energy functional for this surface is

Eballoon(S) = Einfl(S) + Esmooth(S) + Eimage(S). (3.2)

The inflation term Einfl is a function describing the inflation energy of the balloon,
and it can be constant or dependent on the surface features.

In practice, problems arise when two snakes or balloons collide and force a re-
parametrization. For this reason, these algorithms are actually implemented using
scalar field level set to avoid re-parametrizations. The algorithm describes the
surface as an isosurface of a scalar field that is modified during the iteration of
the algorithm. The downside of using scalar field description of the curve or
surface is that the complexity of the algorithm will be dependent on the size of the
image. More extensive description of scalar field level sets can be found in Antiga
(2002).

3.3 Algorithms for registration

Registration aims to find a transformation that aligns two separate datasets. Here
the data is considered to be a point cloud consisting of a set of points in 3D space.
In addition to their coordinates, the points can have other data associated with
them. Since point clouds tend to be fairly large and complicated data structures –
thus making a brute force search impossible – their registration is usually done by
estimating features that can aid the alignment. Additional information, such as
the neighboring information from a polygonal mesh, can also be incorporated. All
the algorithms presented here are implemented in the Point Cloud Library (PCL)
(Rusu and Cousins, 2011).

First, the surface normals of the point clouds are estimated, and the normal in-
formation is then used to compute point features that are independent of the 6D
orientation (x, y, z, roll, yaw, pitch) of the point cloud. These orientation inde-
pendent descriptors are then compared in order to find matching points in the two
point clouds. When enough matching points are known, an affine transformation
can be estimated and the quality of the alignment can be measured, e.g., in terms
of squared euclidean distance of closest points in the two clouds.
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Surface Normal Estimation

One of the simplest ways to estimate surface normals is to try to find the normal
of the plane tangent to the surface. Finding the tangent surface is a least-square
plane fitting estimation problem. The problem can be reduced to doing Princi-
pal Component Analysis (PCA) for a covariance matrix created from the nearest
neighbors of the point where the normal is to be estimated. For a set of points pi in
the neighborhood – including the point itself – the covariance matrix is assembled
as

C =
1

k

k∑

i=1

(pi − p) · (pi − p)T , (3.3)

where p is the centroid of the points pi and k is the number of points. In practice
the PCA of C finds the directions in which the set of points pi has the greatest
variance, and thus two linearly independent tangent vectors of the plane are most
likely to point to the directions of the eigenvectors corresponding to the two largest
eigenvalues of C.

Point Feature Histograms

The Point Feature Histogram (PFH) tries to capture the k-neighborhood mean
curvature of a point using a multidimensional histogram value that is independent
of the 6D orientation of the data. Estimations of surface normals and surface
curvature give a local description of the data, but they are usually too general,
i.e., there are many points with the same normals and curvature, to effectively
align two point clouds. Point Feature Histograms were developed to mitigate this
problem.

Figure 3.3a shows the k-neighborhood of a point. The PFH is based on the relation-
ship of these points and their estimated surface normals, which is why the quality
of the PFH presentation is also dependent on the quality of the estimated nor-
mals. PFH estimates the relative difference of a pair of points pt and ps and their
associated normals nt and ns by defining a coordinate frame (see Fig. 3.3b)







u = ns

v = u× (pt−ps)
‖pt−ps‖2

w = u× v

.

Using this uvw-frame the difference between the normals pt and ps can be ex-
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pressed using angular features as







α = arccos(v · nt)

φ = arccos(u · (pt−ps)
d

)

θ = arctan(w · nt,u · nt)

,

where d is the Euclidean distance between the points pt and ps. The quadru-
plet 〈α, φ, θ, d〉 is computed for each pair of two points in the k-neighborhood.
These quadruplets are then binned into a histogram to form the PFH of a given
point.

(a)

(b)

Figure 3.3: (a) k-neighborhood and (b) PFH frame (Rusu, 2010).

The computational complexity of the full PFH algorithm is O(nk2) for a set of n
points with k neighbors each. To reduce the complexity, a variant known as the
Fast Point Feature Histogram (FPFH) has been developed by Rusu (2010).

FPFH avoids estimating all the possible combinations inside the neighborhood by
only computing the estimators for the query point’s neighbours (see Fig. 3.3a and
Fig. 3.4). This estimator is called Simplified Point Feature Histogram (SPFH).
The full FPFH descriptor is then calculated as a weighted combination of the
SPFH descriptors in the k-neighborhood. Figure 3.4 shows a visualization of the
FPFH neighborhood. The FPFH descriptor for a point pq with neighbors pi can
be written as

FPFH(pq) = SPFH(pq) +
1

k

k∑

i=1

1

wk

SPFH(pi). (3.4)

By avoiding the computation of all possible k-neighborhood combinations, the
FPFH algorithm reaches a computational complexity of O(nk), while still pro-
viding results comparable to those of the PFH descriptor. This speed difference
allows FPFH descriptors to be used in real-time applications.
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Figure 3.4: Visualization of the FPFH neighborhood (Rusu, 2010).

Random Sample Consensus

Once the 6D orientation-independent feature descriptors have been determined,
they can be used to register the point clouds. The well known Random Sample
Consensus (RANSAC) algorithm, first presented by Fischler and Bolles (1981), is
used for computing the initial alignment.

In general, we usually have a large target dataset and a much smaller source
dataset and we want to find a subset of the target dataset that best corresponds
with the source dataset – with respect to some measure. The RANSAC algorithm
finds pairs of matching subsets of the two datasets. After a pairing has been
determined, its quality is examined by finding a transformation that aligns the
matching points by minimizing their squared euclidean distance. All this is done
multiple times during the execution of the algorithm.

The RANSAC algorithm iteratively chooses a small random subset of the target
data and checks its correspondence with the source data points. RANSAC is only
guaranteed to converge to a correct solution when a sufficient number of iterations
is used. The algorithm depends on three parameters which are

• error tolerance, determining a threshold value for compatibility of two point
sets,

• number of iterations, determining the number of randomly selected subsets
to try out, and

• threshold value, being the number of compatible points required to imply
that the correct model has been found.

The error tolerance and threshold values are usually determined experimentally.
Since absolute correspondence between the target and the model can not be guar-
anteed, both of these parameters should be large enough to accept some varia-
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tion.

The number of required RANSAC iterations can be estimated. If the number of
points in the target dataset is N and the number of inliers, i.e., points correspond-
ing to the source, is m, then the probability that a randomly selected point is an
inlier is w = m

N
. If we select a subset of n random points, then all of them are

inliers with probability wn, and at least one is an outlier with probability 1−wn.
If we denote by p the probability that all selected points are inliers and take k
iterations, we get the equality

1− p = (1− wn)k.

By taking logarithms, we arrive at

k =
log(1− p)

log(1− wn)
.

Iterative Closest Point

After initial alignment, the alignment can be further refined using the Iterative
Closest Point (ICP) algorithm. ICP is a fairly simple algorithm that consists of
the following steps executed iteratively

1. Pair points from the target cloud with the closest points from the model
cloud.

2. Estimate a transformation that minimizes the least squares error between
the pairs.

3. Apply the transformation to the model cloud.

4. Check if convergence criteria is met.

Since the source and model datasets are of different size, the ICP algorithm is very
sensitive for the initial alignment and, as such, is not suitable for registration by
itself.
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Extracting 3D models of the vocal

tract

Until recently, the research in medical imaging methods has concentrated on pro-
ducing visualizations meant for evaluation by trained medical professionals. Com-
putational methods require more precise description of the geometry. As a conse-
quence, many medical imaging methods are not applicable as such. This chapter
presents methods for extracting descriptions of the 3D VT geometry from Mag-
netic Resonance (MR) images. These methods rely on the algorithms presented
in Chapter 3. The extraction is ultimately done for a dataset consisting of several
thousands of images. Thus, avoiding manual work has been the major motivation
in developing these methods.

4.1 VT geometry extraction problem

The interior of the VT consists of the volume starting from the trachea and ending
to the mouth and, if the nasal tract is open, to the nostrils. The data for this work
has been obtained using a Siemens Magnetom Avanto MRI device. The goal of
the extraction is to produce geometries of the VT configurations during sustained
pronunciation of Finnish vowels. An example of the resulting geometries can be
seen in Figure 4.1.

To obtain a geometry, a 3D image of the subject is taken with the MRI machine.
The machine takes a sequence of evenly spaced images – in some orientation – and
they are then combined into a voxel image. The voxel values correspond to the
measured tissue densities at the voxel locations. Methods described in Chapter 3
are then used to extract the VT geometry from the voxel image.

Unfortunately, the described procedure is not straightforward, and there are var-

24
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Figure 4.1: VT geometries of Finnish vowels from a male subject. The geometry
for [a] shows part of the nasal tract.

ious issues that have to be tackled in the extraction process. For example, the
tissue density reported by the MRI machine is based on the amount and state of
the hydrogen atoms in the imaged tissue. As a consequence of this, osseous tissues,
such as the maxillae and the mandible, are indistinguishable from air in the image
data. This results in the merging of the maxillae and mandible with the VT air
volume in a naive extraction, as shown in Figure 4.2.

Acoustic modelling of the VT geometry will not be possible if the maxillae and
mandible are merged with the VT acoustic space. This problem is solved by
registering externally constructed maxillae and mandible models with the image
data. The registration information is then used to mask the unwanted volume
from the data. The registration process will also account for variations between
different measurements, i.e, VT configurations, of the same subject. In general,
only one model for the maxillae and mandible is required for each subject.

In addition to the abovementioned challenges, all the usual medical image analysis
problems apply here as well. The images are noisy, and MR images tend to have
measurement artefacts resulting from the reconstruction algorithm of the MRI
machine, movement of the subject, or presence of materials that cause disturbances
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Figure 4.2: A naively extracted isosurface of a VT geometry.

in the magnetic resonances (Aalto et al., 2011a,b). In some cases, the resolution
of the images is very close to the size of the imaged objects, e.g., vocal folds,
leading to higher relative errors. Subject specific anatomical variations can also
be significant, and this is particularly true for anatomically non-typical patients.
Since the process is highly automatized, there should be a way, at least visually,
to verify the quality of the result.
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4.2 Overview of the algorithm

The procedure designed for the VT extraction consists of the following steps:

1. Image Acquisition

The image is acquired using MRI and stored in DICOM format. A volume
render of the voxel data inside the DICOM image can be seen in Figure 4.3a.

2. Initial feature extraction

An isosurface corresponding to the tissue-air interface is extracted from the
voxel image using the marching cubes algorithm described in Section 3.2.
Figure 4.3b shows the resulting initial surface.

3. Registration

Separate surface models for the maxillae and the mandible are registered
with the initial surface using methods discussed in Section 3.3. Colored and
aligned maxillae and mandible models can be seen in Figure 4.3c.

4. Masking

The surface models are transformed using the registration information, vox-
elized, and used to mask out the maxillae and the mandible from the MRI
voxel data.

5. Final feature extraction

A new isosurface is extracted from the masked data. This isosurface can
be further refined using the parametric deformable models described in Sec-
tion 3.2.

6. Mesh post-processing

The quality of the extracted triangular mesh can be improved using tech-
niques described in Section 4.2.

7. Verification

The resulting geometry is visually verified. Figure 4.3d shows a surface model
plotted with a slice of the original voxel data from the DICOM image.

Registration

The maxillae and mandible models for registration have been manually extracted
for each subject from a single initial surface. The maxillae and mandible are
rigid structures, and the registration algorithm can account for changes in their
alignment between different images of the same subject. The used registration
method does not attempt to scale the models. The approximate nature of the
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(a) (b)

(c) (d)

Figure 4.3: (a) A volume render of DICOM data (Step 1). (b) A naively ex-
tracted isosurface. (c) The maxillae and mandible models aligned
with the initial surface (Steps 3 and 4). (d) Verification against the
original data (Step 7).
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registration algorithm can account for small scale changes, but care has to be
taken that the models have been extracted using the same isolevels and that they
have the same scale as the target surface.

Medical imaging devices present the images in their own coordinate systems. Usu-
ally the image files do not contain accurate spatial information for anatomical
features within the image data. Registration can be seen as a way to obtain such
spatial information for the specified anatomic features. An alternative to matching
predefined models is to let a human operator annotate anatomic features from the
images.

Markers can also be added to the data to aid automatic registration algorithms.
For example, MRI visible markers can be attached to patient’s teeth, and in vas-
cular modelling the patient can be injected with a chemical that increases contrast
in the MR images (Antiga, 2002).

Benefits of parametric deformable models

For most geometries, the naive extraction of the isosurface is adequate, considering
the mathematical models used. However, if the response of the MRI machine has
not been stable across the VT or the isolevel is chosen incorrectly, the final result
can have crude errors. Test subjects may also have constricted airways whose
dimensions are near the resolution of the MRI machine. All of these challenges
can, to some extent, be countered by using parametric deformable models or similar
approaches.

Mesh post-processing

The quality of the extracted surface mesh can be improved by re-meshing it. The
purpose of the re-meshing is to improve the quality of mesh faces, e.g., by remov-
ing small and degenerate faces (such as triangles with a very sharp angles). For
physical models, it is usually necessary to maintain some features of the mesh,
such as the surface area and/or the volume. Many algorithms for mesh refinement
exist, and most Finite Element mesh generators do mesh refinement as well (Si,
2006; Antiga, 2002).
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4.3 Area functions for Webster’s equation

The Webster’s equation presented in Chapter 2 makes use of a one-dimensional
representation of the VT. We call this presentation an area function. The area
function is a function A(s) that gives the areas of cross-sectional slices of the VT
taken along a centerline curve γ(s) (see Fig. 4.4).

Construction of the area function requires a parametrised centerline γ for the do-
main Ω. The parameter s is usually taken as the curve length of γ. The centerline
algorithm of the VMTK toolkit is used for obtaining the centerline. The algorithm
is based on finding the Voronoi sheets for the surface ∂Ω and then tracking a path
defined by the center points of the maximal inscribed spheres. However, some
approximations are required since the Voronoi sheets are not manifold surfaces,
and they are sensitive to small surface disturbances (Styner et al., 2003).

After the centerline γ(s) has been obtained, the area functions can be produced
by slicing the VT surface mesh with planes perpendicular to the centerline. The
area function produces an approximate representation of the VT domain. A single
area function is plotted in Figure 4.4.

It should be noted that there are several ambiguities associated with finding cen-
terlines and area functions. First, the centerline, or the topological skeleton, can
be defined in many ways. The centerline used in this work is the one obtained
from the Voronoi-sheet-based algorithm of the VMTK library.

Second, since the area functions are obtained by only considering the part of the
cross-sectional slice that is connected to the centerline, some information poten-
tially left out. This can be seen by comparing the area function in Figure 4.4 with
the surface meshes seen in Figure 4.3. In particular, valleculae and fossae piri-
formes do not show up in the area function. Webster’s model assumes a strictly
tubular domain with no branching, and, therefore, there are no trivial ways to
compensate for these errors.

Third, once a centerline is chosen and the cross-sectional slices have been fixed,
there are actually many possible lines of different length within the VT domain
that would correspond to the same cross-sections (with different parametrisation).
Figure 4.4 shows several centerlines that are all perpendicular to the shown set of
slices.

As Webster’s model is sensitive to the length of the centerline, one may obtain
different results by choosing different centerlines. In reality, the centerline in Web-
ster’s model corresponds to an acoustic centerline. For example, in a straight pipe
the acoustic centerline would naturally be the real centerline of the pipe, but in an
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annulus-shaped domain the acoustic centerline will be frequency-dependent and
closer to the inner curve of the annulus. In addition, the acoustic centerline will
depend globally on the geometry, i.e., pieces of curved pipes joined will have a
different acoustic centerline than the individual pieces have.

Figure 4.4: An area function and multiple matching centerlines.

4.4 Shortcomings, alternatives, and future work

Patient-specific variation and artefacts in MR images can still cause problems
in the processing of some images. Features whose size is close to the resolution
of the MR image are naturally harder to extract. Some of these challenges can
be countered with parametric deformable models. However, they have not been
extensively used in producing the geometries that are used in the computational
part of this work.

The nasal tract is an example of a small cavity that is difficult to extract. For
most subjects, its size is close to the resolution of the MR image. In addition, the
manually extracted maxillae models are so crude that they tend to completely mask
the nasal tract. Reliable extraction of the nasal tract requires higher resolution
images. The measurement setup for this work has been designed to produce images
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within a certain time frame which limits the attainable resolution of our image
data. In terms of acoustics modelling, the impact of the nasal tract is minor, and
most vowels don’t involve the nasal tract at all. Webster’s equation as a model for
speech acoustics does not involve the nasal tract.

We have also chosen an approach where we first construct the surface geometry of
the VT and then generate a tetrahedral mesh inside that surface. It is possible to
directly generate a tetrahedral mesh in the whole image volume and then partition
it in order to extract wanted features (see, e.g., Alliez et al., 2014). However, even
with this approach one needs a way to get rid of the artefacts caused by the
maxillae and the mandible.

All the challenges discussed here are common in imaging applications, and there
exists a wide array of algorithms suitable for implementing different parts of the
overall extraction pipeline. As mentioned before, computational modelling and
geometric analysis of the resulting VT geometry imposes additional requirements
for the results when compared to medical visualization, and in recent years, the
use of computational models in medical imaging has become more common (see,
e.g. Samani et al., 2001; Antiga, 2002).

The image processing algorithms presented here have been implemented in vari-
ous open source libraries. The most widely used libraries include the Visualiza-
tion Toolkit (VTK) and the Insight Segmentation and Registration Toolkit (ITK)
(Schroeder et al., 2001; Ibanez et al., 2005). Some parts of the implementation
make use of the Vascular Modeling Toolkit (VMTK) by Antiga et al. (2008), which
itself relies heavily on the VTK and ITK libraries. Vascular Modelling Toolkit has
been developed for the purposes of medical-image-based modelling of blood vessels.
In addition, the registration algorithms in the Point Cloud Library (PCL) are used.
PCL is a collaborative effort to develop efficient algorithms for point cloud pro-
cessing, which is widely used in, e.g., machine learning and robotics applications
(Rusu and Cousins, 2011).



Chapter 5

Vocal tract acoustics

In this chapter, VT acoustics are studied by computing the acoustic resonances
with the Helmholtz model and Webster’s resonance model described in Chapter 2.
The geometry data consists of all the Finnish vowels, imaged from a Finnish 26-
year-old male. All vowels have multiple measurements. The geometries have been
obtained using the procedures described in Chapter 4. The resonance equations
are solved using the Finite Element Method (FEM). We also compare the obtained
results to the vowel formants extracted from sound samples recorded simultane-
ously with the image acquisition.

5.1 Data acquisition

The data has been obtained using a Siemens Magnetom Avanto 1.5T scanner
(Siemens Medical Solutions, Erlangen, Germany). The maximum gradient field
strength of the system is 33mT/m (x,y,z directions) and the maximum slew rate is
125T/m/s. A 12-element Head Matrix Coil and a 4-element Neck Matrix Coil are
used to cover the vocal and nasal tracts from the lips and nostrils to the beginning
of the trachea. The coil configuration allows the use of Generalize Auto-calibrating
Partially Parallel Acquisition (GRAPPA) technique to accelerate acquisition.

3D VIBE (Volumetric Interpolated Breath-hold Examination) MRI sequence (Rof-
sky et al., 1999) is used to allow the rapid 3D acquisition required for the exper-
iments. Sequence parameters are optimized in order to maximize resolution and
minimize the acquisition time as explained in Aalto et al. (2014). The data used
in this work was produced in 2012 from a Finnish 26-year-old male subject. An
experimental arrangement has been developed (see Aalto et al., 2011a, 2014) to
collect a combined data set of MRI and speech samples.

The MRI sequence output is stored as a DICOM file that comprises of 44 sagittal
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plane images; each image has a resolution of 128× 128 pixels of size d = 1.9mm.
These form an array of voxel data consisting of 44× 128× 128 voxels, each having
a value (between 0 and 800) describing the response of the MRI machine at the
location of the voxel. The alignment of the voxels is carried out using the location
data produced by the MRI machine.

5.2 Finite element modelling

We will use the Finite Element Method (FEM) to solve the mathematical acoustic
models presented in Chapter 2. A short description of FEM is given here, but for
general error analysis and convergence properties the reader is referred to, e.g.,
Braess (2007) or Johnson (2012).

Preliminaries

In order to solve this equation using FEM we will derive its weak formulation.
The weak formulations are obtained by multiplying the equation with a test func-
tion

ϕ ∈ V = {f ∈ H1(Ω) : f(r) = 0 for r ∈ Γm}

and integrating over the geometric domain Ω. Dirichlet boundary conditions are
taken into account in the choice of the function space. Other boundary conditions
are embedded into the variational formulation, this is usually done by applying
Green’s formula.

It can be shown that finding a Φλ ∈ V that satisfies the weak formulation for all
ϕ ∈ V is equivalent with the following energy minimization problem

Find Φλ such that F (Φλ) ≤ F (ϕ) for all ϕ ∈ V, (5.1)

where F : V → R is an energy functional of the problem. Physically this corre-
sponds with finding a solution that satisfies the principle of minimum potential
energy when all possible solution functions are taken into account.

In practice, the space V has infinite dimension and, thus, it is not possible to find
a solution (i.e. function) that can be described with a finite number of parame-
ters. To obtain a problem that can be solved using a computer, we construct a
finite dimensional subset Vh ⊂ V of the original function space. This is done by
discretizing, i.e., meshing, the space and representing the functions using a finite
number of parameters.
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The discretization elements, the functions, and the degrees of freedom of the func-
tions on the elements can be chosen in multiple ways. These three choices define
the type of the finite element used. In this work tetrahedrale elements with first-
order, i.e., linear, basis functions are used.

Tetrahedral mesh generation

The Finite Element (FE) solver requires discretization of the domain. In the case of
a 3D domain this discretization will be a tetrahedral mesh. This mesh is generated
for each of the VT geometries obtained using the methods described in previous
chapters.

Since FEM is widely used in engineering applications, there are many software
packages available for mesh generation. We have used TetGen (Si, 2006) in this
work.

The mesh generator takes a closed surface representing the VT volume where the
glottis and mouth boundaries have been marked; this can be seen in Figure 5.1a.
It produces a tetrahedral mesh that can be used as an input for the FEM solver.
A cross-section of a tetrahedral mesh can be seen in Figure 5.1b.

The quality of the computational result is dependent on the quality of the tetra-
hedral mesh. The size and the shape of the elements affect the accuracy of the
computational result. In general, using smaller elements produces better results.
However, the use of smaller elements requires use of more elements, which will
require more computational resources. Mesh quality can be inspected visually and
by checking against different mesh quality criteria (see, e.g. Si, 2006). The degree
to which the results are sensitive to the mesh quality also depends on the FEM
model used. The FEM models used in this work are not very sensitive to the
quality of the mesh.

Although mesh generation is a common engineering problem, most engineering
applications are designed to create meshes for simple geometries. Obviously, the
VT can have quite a complex shape, and there has been varying success with
different mesh generators. However, the quality of the surface mesh is the most
important factor in successful mesh generation.
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(a) (b)

Figure 5.1: An example of a tetrahedral mesh. (a) Boundary conditions colored.
(b) A cross-cut of the mesh showing some of the tetrahedra inside.

Helmholtz equation

The full Helmholtz equation with boundary conditions is

c2∇2Φλ + λ2Φλ = 0 in Ω (5.2)

λΦλ + c
∂Φλ

∂ν
= 0 on Γg (5.3)

αλΦλ +
∂Φλ

∂ν
= 0 on Γw (5.4)

Φλ = 0 on Γm. (5.5)

Multiplying by a test function ϕ ∈ H1
Γm

and integrating over Ω we obtain

c2
∫

Ω

∇2Φλϕ dr+ λ2

∫

Ω

Φλϕ dr = 0. (5.6)

Using the Green’s formula yields

c2
∫

Ω

∇Φλ∇ϕ dr− c2
∫

Γ

∂Φλ

∂ν
ϕ ds+ λ2

∫

Ω

Φλϕ dr = 0, (5.7)

where the boundary Γ = Γg ∪ Γw ∪ Γm. Due to the Dirichlet condition (5.5) the
integral over Γm vanishes since the test function ϕ = 0. For the boundary integrals
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over Γg and Γw, the partial derivatives are transformed according to (5.3) and (5.4),
respectively. Thus we get

c2
∫

Ω

∇Φλ∇ϕ dr+ λ2

∫

Ω

Φλϕ dr+ λ

[

c

∫

Γg

Φλϕ ds+ αc2
∫

Γw

Φλϕ ds

]

= 0. (5.8)

FEM assembly of the variational forms in Equation (5.8) results in the correspond-
ing matrix equation

λ2Mx(λ) + λ
[
cPg + αc2Pw

]
x(λ) + c2Kx(λ) = 0, (5.9)

where we have the mass matrix M, stiffness matrix K, and matrices Pg and Pw

presenting the boundary conditions at glottis Γg and VT walls Γw, respectively.
These matrices are symmetric square matrices and their dimensions are dependent
on the discretization of the domain, i.e., the FEM mesh.

Equation (5.9) is an eigenvalue problem that can be solved by writing it in a form
of generalized eigenvalue problem

Ay(λ) = λBy(λ), (5.10)

where

A =

[
− [cPg + αc2Pw] −c2K

I 0

]

, B =

[
M 0
0 I

]

and y(λ) =

[
λx(λ)
x(λ)

]

.

This and other methods for formulating eigenvalue problems are discussed, for
example, in Saad (1992).

If the quality of the discretization is high enough, the eigenvalues λi of the prob-
lem (5.10) correspond to the λ in Eq. (5.2). The lowest resonance frequencies
R1, R2, . . . , correspond to the eigenvalues λi ordered with increasing imaginary
part. Furthermore, the eigenvectors x(λi) give an approximation of the velocity
potential Φλi

at mesh nodes.

Time-harmonic Webster’s equation

The variational formulation for the time-harmonic Webster’s equation is obtained
similarly to the Helmholtz equation. Leaving the parameter s implicit for Φλ, ϕ,
A, W , and Σ we start with

λ2

c2
1

Σ2
Φλ + λ

2παW

A
Φλ −

1

A

∂

∂s

(

A
∂Φλ

∂s

)

= 0 on [0, L] (5.11)

λΦλ − cΦ
′

λ = 0 at s = 0 (5.12)

Φλ = 0 at s = L (5.13)
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which is multiplied by A(s) and c2 before applying the test function and integrating
to obtain

λ2

∫

L

Φλϕ
A

Σ2
ds+ λc22πα

∫

L

ΦλϕW ds− c2
∫

L

∂

∂s

(

A
∂Φλ

∂s

)

ϕ ds = 0. (5.14)

The integration by parts formula then yields

λ2

∫

L

Φλϕ
A

Σ2
ds+ λc22πα

∫

L

ΦλϕW ds

− c2
∣
∣
∣
∣

L

0

AΦ
′

λϕ+ c2
∫

L

Φ
′

λϕ
′

A ds = 0. (5.15)

Which further simplifies to

λ2

∫

L

Φλϕ
A

Σ2
ds+ λc22πα

∫

L

ΦλϕW ds

+ λcΦλϕA+ c2
∫

L

Φ
′

λϕ
′

A ds = 0. (5.16)

FEM assembly for this problem is done using linear 1D elements. The resulting
eigenvalue problem is identical to (5.9).

5.3 Results

The results have been computed using a custom FEM solver implemented in MAT-
LAB. The solver uses first order linear elements (e.g., Lagrange elements), in 1D
for Webster’s equation and in 3D for the Helmholtz equation. The solvers and
their results have been verified against artificial objects and objects represent-
ing simplified vocal tracts. Simplified geometries and an area function inside the
surface of the corresponding tetrahedral mesh can be seen in Figure 5.3. We
have used the sound speed c = 350m/s and the VT wall dissipation coefficient
α = 7.6× 10−7 s/m.

The difference between resonance frequencies and formants can be measured in
semitones using a discrepancy calculation defined as

D(f1, f2) = 12 ln

(
f1
f2

)

/ ln 2.

We computed the first six resonances with both acoustics models. The resulting
resonances and their discrepancies are given in Table 5.1. The first six Helmholtz
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Table 5.1: (a) Mean Helmholtz resonances. (b) Mean Webster resonances. (c)
Mean discrepancies between Helmholtz and Webster resonances.

(a)

H1 H2 H3 H4 H5 H6

[a] 538 1410 2659 2970 3057 3110
[e] 334 1943 2704 2876 3413 3485
[i] 195 2042 2986 3126 3378 3626
[o] 467 1040 1925 2682 2917 3005
[u] 245 909 2132 2867 2943 3060
[y] 272 1519 1814 2202 2674 2861
[ae] 524 1590 2253 2848 2920 3033
[oe] 391 1326 1887 2035 2866 3094

(b)

W1 W2 W3 W4 W5 W6

[a] 621 1501 2979 3328 4401 5264
[e] 346 2067 2882 3047 4294 5761
[i] 203 2228 3125 3455 4276 5759
[o] 544 1191 2582 3163 4138 4757
[u] 270 1060 2341 3151 3504 4331
[y] 281 1796 2489 3082 3784 4390
[ae] 573 1711 3022 3323 4420 5687
[oe] 420 1531 2569 3085 4075 5153

(c)

D(H1,W1) D(H2,W2) D(H3,W3) D(H4,W4) D(H5,W5) D(H6,W6)

[a] -2.58 -3.01 -4.11 -2.31 -6.83 -8.93
[e] -0.61 -1.07 -1.11 -1.00 -3.97 -8.70
[i] -0.63 -1.53 -0.70 -1.65 -4.35 -8.17
[o] -2.62 -2.30 -5.83 -2.89 -6.04 -7.95
[u] -1.68 -2.61 -1.62 -1.63 -3.03 -6.03
[y] -0.56 -2.91 -5.48 -5.82 -6.03 -7.41
[ae] -1.57 -1.24 -5.53 -2.68 -7.19 -10.89
[oe] -1.25 -2.62 -6.09 -8.16 -6.27 -8.94
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Figure 5.2: First six Helmholtz resonances plotted against Webster resonances.

and Webster resonances have been plotted against eachother in Figure 5.2. Fig-
ures 5.4 and 5.5 show the first four resonances plotted against formants extracted
from sound samples.

The lower resonances for Webster’s model and Helmholtz model match well for
tube-like domains with no significant curvature, but neither of these assumptions
is completely true for the VT geometries. The lowest four resonances, which
are the most relevant ones, match well. Higher resonances start to mismatch
because Webster’s model only captures resonances in the longitudinal direction.
Most of the differences in the lowest four resonances for the same vowel are due
to a naive way of automatically choosing the location of the glottis and mouth
boundaries. Each resonance of a single vowel should form same-colored group of
dots in Figure 5.2.
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Figure 5.3: Surface of the tetrahedral mesh with the area slices for vowel [u]. The
area function cuts out the piriform sinuses. The geometry also shows
appendages left by the geometry extraction with a crude mandible
model.

As an example of naive choice of boundary, if the teeth structures are not com-
pletely cleaned from the surface, narrow appendages to the geometry will result;
this can be seen in Figure 5.3. In some of these cases the boundary has been
chosen so as to cut out the appendages. This results in higher resonances because
the distance from the glottis to the mouth will be shorter.

For some geometries, the appendages have not been cut out. Leaving the ap-
pendages will have no significant effect onWebster resonances, but in the Helmholtz
model they act as low pass filters for the signal and result in significantly lower, and
arguably totally unrealistic, resonances. The effect can be seen for some geome-
tries of [a], [o], [y], [ae], and [oe] in Figure 5.2. This error should be countered by
adjusting the geometry extraction to properly remove the teeth structures.

As was discussed earlier, the results from Webster’s model can also change if a
different centerline is chosen. We have used a spline interpolant of the centerline
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vertices returned by the VMTK library.

We have only extracted the lowest four formants from the sound samples corre-
sponding to the geometries. The formants differ more compared to the resonances.
The Helmholtz and Webster’s models are, in some sense, idealized, whereas the
formants have been extracted from actual sound samples. Extracting the for-
mants requires cancellation of the MRI machine noise from the sound samples. A
significant amount of signal processing is involved in the formant extraction and
as a result the extraction can sometimes produce spurious results. (Kuortti and
Malinen, 2015)

Aside from computational and geometrical considerations, there are several real
life sources of error. During the measurement the subject is laying inside an MRI
machine in supine position for a period of about 1 hour. It is difficult to control
errors that might be caused by the subject moving inside the machine during
imaging, etc. Even for a trained person, which the test subject is not, it would be
very difficult to consistently produce exactly the same utterances.

For the purposes of speech research, we are mostly interested in frequencies below
5 kHz, where human hearing is most sensitive. Higher resonances will also be
numerically more unstable and thus no longer contain significant information. In
fact, in most languages the vowel sounds can be classified using just the two lowest
resonances.

To give more statistical credibility for the results, studying a larger set of data
from multiple subjects will be required. That will be left for future work. It is
likely that advances in medical imaging technology will make this kind of analysis
cost-effective and routine. In the future taking time-dependent 3D images, i.e. 3D
video, will also be a possibility (Gamper et al., 2008; Kampf et al., 2010). This will
allow studying even more complicated phenomena, provided that suitable methods
are developed.
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Figure 5.4: First four Helmholtz resonances plotted against Formants.
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Figure 5.5: First four Webster resonances plotted against Formants.



Chapter 6

Discussion

The main part of this work considers methods for extracting vocal tract geometries
(Chapter 3 and Chapter 4). These geometries were used to model vocal tract
acoustics during vowel production. The computational results were presented in
Chapter 5.

Chapter 2

The acoustics models used in this work consisted of the Helmholtz and Webster’s
resonance equations. We used simple boundary conditions to present the glot-
tis signal, VT walls, and mouth excitation. Especially the Dirichlet boundary
condition at the mouth can be considered a rudimentary approximation for the
exterior space, which is expected to have a significant effect on the acoustics. Nev-
ertheless, this kind of models are widely used in speech research applications and
they are adequate for many practical and theoretical applications. Due to the
high computational requirements of large volume acoustic models, some kind of
approximations are required for joining an exterior space model with the VT.

The presented mathematical models can also be used in time-dependent modelling.
Modelling time-dependence will increase the computational cost of the models
significantly, especially if the exterior space is to be modelled. Obtaining accurate
time-dependent geometries is also problematic, although approximations, such as
extrapolating the area function from a dynamic MR image of the mid-sagittal
plane, are certainly possible (see, e.g., Baer et al., 1991). Some emerging MRI
techniques also allow acquisition of dynamic 3D MR images of the whole speech
apparatus.

44
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Chapter 3

The image processing methods presented here are all well known. They have many
applications and they have been studied for a long time. They are also related to
many other research areas, such as machine learning, robotics, and data analysis.
Using multi-modal datasets effectively is also an important area of research. Due
to the active and long continuing research, there is a significant amount of different
methods available. Therefore, choosing the right ones and combining them to a
working solution is not necessarily an easy task. In fact, model selection is a
research area in itself. Simpler methods tend to be more effective, and this work
mainly uses methods that are well known and widely used.

Chapter 4

The primary goal of this chapter was to define a procedure for extracting VT ge-
ometries from MRI data. MRI is well suited for obtaining a large number of images
since it does not produce ionizing radiation like CT procedures do. Ultrasound
imaging has also been used in speech research applications, but the resolution is
not adequate for our purposes. However, MR images contain no information about
osseous tissue; this is a problem in imaging the VT since the air volume is directly
connected to the teeth, maxillae, and mandible, causing them to merge with the
interior of the VT in MR images.

A procedure for masking out the maxillae and mandible has been described. This
allows the extraction of VT geometries suitable for computational modelling of
VT acoustics. Since thousands of MR images need to be processed, minimization
of manual work in the geometry extraction has been an important objective.

The maxillae and mandible were masked out from the MRI data by register-
ing manually constructed models for the maxillae and mandible with the MR
data. Since the maxillae and mandible are rigid structures, only one manually
constructed model for each is required per one test subject. The maxillae and
mandible models were constructed manually for this work. In principle, the max-
illae and mandible models could also be obtained using different medical imaging
methods such as a CT scan of the teeth.

The current procedure can not extract the nasal tract. In many subjects, the
resolution of the MR image would also likely be inadequate for identifying the nasal
tract. However, the nasal tract does not play a part in most vowel sounds. The
used version of Webster’s model is also not suitable for geometries with multiple
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acoustic exits, although it can be extended to consider branching domains (Aalto
et al., 2015a).

One problem in automatic geometry extraction for computational purposes is de-
termining the position and shape of the glottis and mouth boundaries. This is
currently done using the area function: the locations are heuristically determined,
and the boundaries are assumed to be straight plane cuts. The location and shape
of the boundaries may have to be more intelligently determined for higher accuracy
modelling.

The procedure seems to perform fairly well for the restricted data set used in this
work. However, variations in subject anatomy and artefacts in MR images may
still cause problems. Many of these problems can be treated using the parametric
deformable models and mesh post processing methods that have been discussed.
Also, crude artefacts can not trivially be detected in the image data. Thus visual
inspection of the result is of utmost importance. In the context of speech research,
visual inspection of the computational geometry is not always adequate since it
may be impossible, without additional information, to verify whether the geometry
actually presents some specific utterance.

The presented procedure was successfully used to extract geometries for the compu-
tational experiments presented in Chapter 5. This can be considered as validation
for the presented methods.

Chapter 5

The acoustic resonance properties of the VT configurations extracted from MR
images were studied computationally. The VT configurations were extracted from
MR images taken during the pronunciation of Finnish vowels. The test subject
was a 26-year-old male who is a native Finnish speaker.

The Finite Element Method (FEM) was used to solve the acoustic models described
in Chapter 2. The obtained computational resonances were compared to formant
resonances determined from sound samples that were recorded simultaneously with
the MR imaging.

The results compare well with similar data found in literature. The 3D resonance
model shows that it is possible to have significant transversal resonances inside
the human VT. These transversal resonances are within the normal hearing range,
although above 4 kHz. Transversal resonances may explain the spectral clustering,
a phenomena that has been consistently observed in formant measurements from
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phonations of trained singers. Some vowel formant variations between different
subjects could also be explained by transversal resonances.

The simple acoustic models used in this work are quite forgiving in terms of the
quality of detail in the VT geometry: small perturbations do not have significant
effects on the results. As explained before, the most significant errors are a re-
sult of the naive boundary conditions. Computational modelling of the exterior
space requires further research. Limits in computational capacity impose some
restrictions, and it is likely that modelling of the exterior space requires a model
of reduced dimensions.

Most existing speech models are used in telephony, speech synthesis, speech analy-
sis, and medical applications for which they have been specifically developed. Such
models are usually simplified. The presented model is far from a full speech model,
but it still shows that accurate models of human speech can produce new infor-
mation. For example, information about the pressure distribution of resonances
inside the VT could be used as an aid in surgery planning. Simpler models will
not be able to produce accurate enough information. There are other similar mod-
els, see e.g., Takemoto et al. (2010); Vampola et al. (2013); Arnela et al. (2013).
The produced geometries could be used for many purposes, for example, in flow
mechanical and time-dependent models, as well as in refinement and verification
of existing speech models.

The main outcome of this work has been the verification that processing a signif-
icant amount of MRI-acquired VT data automatically is possible. More accurate
modelling can potentially provide new information and insights in speech research
and other fields.
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